Modeling Compound Growth in Excel Part 1

Robert Muller
CS 021 Computers in Management
Boston College

Exchange

- Want to borrow some money?
 - You'll have to pay it back!
 - You'll have to give me something extra for depriving me of the possession of my resource.
 - Usually expressed as a percentage of the amount borrowed --- the **interest rate**

9/15/09

CS 021 Computers in Management

Borrow PV for 1 Day at interest rate i

9/15/09

CS 021 Computers in Managemen

Borrow PV for 1 Day at interest rate i PV PV(1+i) The Future Value FV₁ = PV(1+i)

n Periods – the Basic Formula	
The choose the Basis Formala	
$FV_n = PV(1 + i)^n$	
9/15/09 CS 021 Computers in Management 7	
	•
n Periods – the Basic Formula	
$FV_{nper} = PV(1 + rate)^{nper}$	
nper (1 (1) (2)	
9/15/09 CS 021 Computers in Management 8	
9/15/U9 LS UZ1 Computers in Management 8	
Future Value in Excel	
[]//rata maar most D\/ tyma	
FV(rate, nper, pmt, PV, type)	
9/15/09 CS 021 Computers in Management 9	

Future Value in Excel	
ruture value ili excel	
FV(rate, nper, pmt, PV, type)	
	_
9/15/09 CS 021 Computers in Management 10	
Negative for Outflow Positive for Inflow	
FV(10%,2,,- <mark>100</mark>)	
= 121	
9/15/09 CS 021 Computers in Management 11	
Negative for Outflow Positive for Inflow	
FV(10%,2,,100)	
= (-121)	
9/15/09 CS 021 Computers in Management 12	

	1
Example	
2.dilipie	
Problem: Aunt Alice gave you a gift of \$2000 on your birthday. How much is it now that you	
are 21 if it grew at 5% per year?	
Answer:	
9/15/09 CS 021 Computers in Management 13	
	1
Fundanta	
Example	
Problem: Aunt Alice gave you a gift of \$2000 on your birthday. How much is it now that you	
are 21 if it grew at 5% per year?	
Answer:	
= 2000 * (1 + .05) ²¹	
= FV(5%, 21, , -2000)	
= \$5,571.93	
9/15/09 C5 021 Computers in Management 14	
3/13/US GALCONDUCTO III Menagement 14	
Example	
Problem: You buy a ladybug colony with 200	
ladybugs. If their population doubles every	
year, how many lady bugs will you have in 6	
months?	
Answer:	
Allower.	
	1

Example

Problem: You buy a ladybug colony with 200 ladybugs. If their population doubles every year, how many lady bugs will you have in 6 months?

Answer:

- $= 200 * (1 + 1)^{1/2}$
- = FV(1, 1/2, , -200)
- = 282.84

- /-- /--

imputers in Management

Example

Problem: You buy a ladybug colony with 200 ladybugs. If their population doubles every year, how many new lady bugs will you have in 5 days? Round to the nearest integer.

Answer:

9/15/09

CS 021 Computers in Management

Example

Problem: You buy a ladybug colony with 200 ladybugs. If their population doubles every year, how many new lady bugs will you have in 5 days? Round to the nearest integer.

Answer

- $= ROUND(200 * (1 + 1)^{5/365} 200),0)$
 - = 2

9/15/09

CS 021 Computers in Managemen

18

Example

Problem: Aunt Alice gave you a gift of \$2000 on your birthday. How much is it now that you are 21 if it grew at 5% per year compounded by the minute?

Answer:

- /-- /--

CS 021 Computers in Management

Example

Problem: Aunt Alice gave you a gift of \$2000 on your birthday. How much is it now that you are 21 if it grew at 5% per year compounded by the minute?

Answer:

- = FV(5%/(365*24*60),21*365*24*60,,-2000)
- = \$5,715.30 NB: > FV(5%, 21,, 2000)

9/15/09

021 Computers in Management

Compounding Factor

$$FV_n = PV(1 + i)^n$$

9/15/09

CS 021 Computers in Management

Sol	ving for PV, rate and nper
F\	/ = PV(1 + rate) ^{nper}
9/15/09	CS 021 Computers in Management. 24

Solving for PV	

$$FV = PV(1 + rate)^{nper}$$

$$PV = FV[1/(1 + rate)^{nper}]$$

0/45/00

21 Computers in Management

Discount Factor

$$PV = FV[1/(1 + rate)^{nper}]$$

9/15/09

021 Computers in Management

Properties of the Discount Factor

9/15/09

Computers in Management

Example rents plan to

Problem: Your parents plan to give your newborn daughter a gift that will grow to \$100,000 when she starts college. How much will they have to stash away if they earn 5% per year?

Answer:

- /-- /--

puters in Management

Present Value in Excel

PV(rate, nper, pmt, FV, type)

9/15/09

mputers in Management

Example

Problem: Your parents plan to give your newborn daughter a gift that will grow to \$100,000 when she starts college. How much will they have to stash away if they earn 5% per year?

Answer:

- = 100000 * (1 / (1 + .05)^18)
- = PV(5%, 18, , -100000)
- = \$41,552

9/15/09

mputers in Management

Example

Problem: Your neighbor made \$1,000,000 on risky investments in mortgage backed securities. How much would this have been in 1956 dollars, assuming a 5% annual growth rate?

Answer:

- /-- /--

CS 021 Computers in Management

Example

Problem: Your neighbor made \$1,000,000 on risky investments in mortgage backed securities. How much would this have been in 1956 dollars, assuming a 5% annual growth rate?

Answer:

- $= 1000000*(1/(1+.05)^{2009} 1956)$
- = PV(5%, 2009 1956, , -1000000)
- = \$75,330

9/15/09

CS 021 Computers in Management

22