Modeling Compound Growth in Excel Part 2

Robert Muller
CS 021 Computers in Management
Boston College

Compounding

9/22/09

S 021 Computers in Management

Compound Growth

Basic Formula

$$FV = PV(1 + rate)^{nper}$$

9/22/09

CS 021 Computers in Managemen

Future Value in Excel	
i didic value ili Excel	
FV(rate, nper, pmt, PV, type)	
9/22/09 CS 021 Computers in Management 4	
	1
Compounding	
Present Value	
$PV = FV \left[\frac{1}{(1 + rate)^{nper}} \right]$	
,	
9/22/09 CS 021 Computers in Management 5	
Present Value in Excel	
PV(rate, nper, pmt, FV, type)	
i vitate, lipel, plitt, i v, type)	
	I .

Solving for nper

$$FV = PV(1 + rate)^{nper}$$

9/22/09

CS 021 Computers in Management

Solving for nper

$$\frac{FV}{PV} = (1 + rate)^{nper}$$

0/22/00

CS 021 Computers in Management

Digression

$$\frac{FV}{PV} = (1 + rate)^{nper}$$

- If FV > PV then FV/PV > 1, growth
- If FV < PV then FV/PV < 1, loss

9/22/09

CS 021 Computers in Managemer

				: ~	
וט	igr	е	55	IU	1

$$\frac{FV}{PV} = (1 + rate)^{nper}$$

If FV = PV then FV/PV = 1 and either nper = 0 or rate = 0.

9/22/09

nputers in Management

Returning to solving for nper remember

$$\log_a b$$

$$n = log_m m^n$$

9/22/09

CS 021 Computers in Management

Solving for nper

Now take the $log_{(1 + rate)}$ of both sides.

9/22/09

21 Computers in Management

Solving for nper	
$nper = log_{(1+rate)} \frac{FV}{PV}$	
1 O(1+rate) PV	
9/22/09 CS 031 Computers in Management 13	
nper is a built-in function in Excel	
·	
nper(rate, pmt, pv, fv, type)	
inper (race) pins, pi, ri, eype,	
9/22/09 CS 021 Computers in Management 14	
Example	
Problem : Warren Buffet's net worth in 2008 was	
\$62 billion. If you started with \$1,000 and earned 30% per year, in what year would you have as much as Mr. Buffet had in 2008?	
Answer:	
Answer.	

c_{\sim}	lution
- 201	lution

$$2009 + \log_{1.3} \frac{62 \times 10^9}{10^3}$$

0/22/00

21 Computers in Management

Solution

= 2009 + NPER(30%, 0, -1000, 62*10^9) = 2077

9/22/09

CS 021 Computers in Management

Example

Problem: An ichthyologist estimates that there are 2 million Walleyes in Lake Oskegon in 2009. If they multiply at 5% per year, when was the first fish introduced?

Answer:

9/22/09

Computers in Management

6

Example

Problem: An ichthyologist estimates that there are 2 million Walleyes in Lake Oskegon in 2009. If they multiply at 5% per year, when was the first fish introduced?

9/22/09

Computers in Management

Solving for rate

9/22/09

021 Computers in Management

Solving for rate

$$\frac{FV}{PV} = (1 + rate)^{nper}$$

9/22/09

omputers in Management

Sol	lving	for	rate
50	ville	101	iacc

$$a^{m^n} = a^{mn}$$

9/22/09 CS 021 Computers in Management

Solving for rate

$$\frac{FV}{PV}$$
 = (1 + rate)^{nper}

9/22/09 CS 021 Computers in Manageme

Solving for rate

rate =
$$\left(\frac{FV}{PV}\right)^{\frac{1}{nper}}$$
 - 1

22/09 CS 021 Computers in Managem

Solving for nper

rate(nper, pmt, pv, fv, type, guess)

9/22/09

Management

Why is there a guess?

rate =
$$\left(\frac{FV}{PV}\right)^{\frac{1}{nper}}$$
 - 1

 Need to compute nper_{th} root of FV / PV;

9/22/09

puters in Management

Computing the rate Iteratively

- 1. Answer := guess + 1
- 2. Try := Answer^{nper}
- 3. If Abs(FV/PV Try) is acceptable, stop.
- 4. If Try < (FV/PV) Answer := Answer + increment
- 5. If Try > (FV/PV) Answer := Answer increment
- 6. Goto step 2.

9/22/09

CS 021 Computers in Management

27

Computing the rate

- If you don't provide a guess, Excel uses 10%
- If Excel doesn't come up with an acceptable answer in 20 iterations, it signals a #NUM error

9/22/09

021 Computers in Management

Example

Problem: You have \$10,000 to invest. You're going to need \$20,000 in 10 years. What interest rate do you need?

Answer:

9/22/09

CS 021 Computers in Management

Example

Problem: You have \$10,000 to invest. You're going to need \$20,000 in 10 years. What interest rate do you need?

Answer:

 $2^{1/10} - 1$

= rate(10, 0, -10000, 20000)

= 7.18%

9/22/09

uters in Management

Example

Problem: Andrew's tomato plants are 3 cm high. He expects them to grow by 1% per week for the 2 months that they remain inside. At what rate will they have to grow when they are outdoors if he wants them to be 20 cm in 6 months?

Answer:

- /-- /--

CS 021 Computers in Management

Example

Problem: Andrew's tomato plants are 3 cm high. He expects them to grow by 1% per week for the 2 months that they remain inside. At what rate will they have to grow when they are outdoors if he wants them to be 20 cm in 6 months?

Answer: = $(20 / 3(1 + .01)^8)^{(1/16)} - 1$

= rate(16, 0, fv(1%, 8,, 3), 20)

= 12%

9/22/09

CS 021 Computers in Management