Logical Values and their Applications
Robert Muller
CS 021 Computers in Management Boston College
Boston College
Today
loday
Logical Values
 Related Operators and Functions
• Applications
 Using temporary work areas.
osing temporary work areas.
CS 021 Computers in Management 2
Types of Values in Eycel
Types of Values in Excel
• So far:
– Text : Boston College
- Numbers:
integer: e.g., 0, 343floating point: e.g., 3.14159, \$24.50
• Related operators : +, -, *, /, ^
 Related built-in functions: MIN, FV, IRR,

A Note on Text and Strings

- Related type string:
 - Type: Hello into cell A1
 - Type: = "Hello" into cell A1
- The latter is a string. These are equal.

CS 021 Computers in Management

Types of Values in Excel

• Now logical (or Boolean) values:

TRUE, FALSE

- NB:
 - TRUE is not the same as the string "TRUE"
 - FALSE is not the same as the string "FALSE"

CS 021 Computers in Management

George Boole (1815-1864)

An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, 1854

" ... provided the theoretical grounding for the Digital Age."

CS 021 Computers in Managemen

R۵	lationa	l One	ratore
ĸe	lationa	i Obe	rators

- The symbols <, >, <=, >=, = and <> denote relational operators.
- An expression of the form:

Expression₁ RelationalOperator Expression₂

denotes a logical value, i.e., either TRUE or FALSE.

• NB: The same operator (e.g., >) can be used with different types of operands.

CS 021 Computers in Management

Nomenclature

• From here on, when the value of a given formula is a logical value (i.e., either TRUE or FALSE) we may refer to the formula as a *logical* or *relational formula* or a *test*.

CS 021 Computers in Managemer

Numerical Examples

- The value of the formula 2 = 3 is FALSE.
- The value of the formula 2 <> 3 is TRUE.
- The value of the formula 2 <= 3 is TRUE.

CS 021 Computers in Managemer

Numerical Examples

- The value of the formula 3 = 3.0 is TRUE.
- The value of the formula 2 < 3 < 4 is FALSE!
 - As you will see, we use AND(2 < 3, 3 < 4) instead.

CS 021 Computers in Manageme

10

String Examples

- The value of the formula "this" = "that" is FALSE.
- The value of the formula "this" = "tHiS" is TRUE.
 - String comparison disregards case.

• The value of the formula "this" = " this" is FALSE. (spaces matter)

CS 021 Computers in Management

11

Example

Problem: Cells B2:B8 contain test scores. Cell E1 contains a number specifying a passing grade. Cells C2:C8 should indicate whether or not the corresponding score is a passing grade.

Answer:

CS 021 Computers in Managemer

	Example				
\rightarrow	Α	В	С	D	Е
1	Name	Score	Pass	Min	70
2	Joe	75	TRUE		
3	Mary	99	TRUE		
4	Carlos	81	TRUE		
5	Rham	62	FALSE		
6	Barbara	100	TRUE		
7	Tom	58	FALSE		
8	Annette	97	TRUE		
9					
10					
	CS 021 Computers in Management 13				

Problem: Cells B2:B8 contain test scores. Cell E1 contains a number specifying a passing grade. Cells C2:C8 should indicate whether or not the corresponding score is a passing grade.

Answer:

- 1. C2 gets = B2 >= E\$1
- 2. Copy C2 to C2:C8

CS 021 Computers in Management

Functions Related to Logical Values

IF, AND, OR, NOT

VLOOKUP, HLOOKUP

SUMIF, COUNTIF, IFERROR

puters in Management

IF(testFormula, thenFormula, elseFormula)

- The testFormula must be a logical formula
- If value of testFormula is TRUE then value of entire IF-formula is the value of thenFormula
- If value of testFormula is FALSE then value of entire IF-formula is the value of elseFormula

CS 021 Computers in Management

16

Example Revisited					
\rightarrow	Α	В	C	D	Е
1	Name	Score	Pass	Min	70
2	Joe	75	Yes		
3	Mary	99	Yes		
4	Carlos	81	Yes		
5	Rham	62	No		
6	Barbara	100	Yes		
7	Tom	58	No		
8	Annette	97	Yes		
9					
10					
11		CS 021 Comput	ers in Management		17

Example

Problem: Cells B2:B8 contain test scores. Cell E1 contains a number specifying a passing grade. Cells C2:C8 should indicate whether or not the corresponding score is a passing grade.

Answer:

- 1. C2 gets = IF(B2 >= E\$1, "Yes", "No")
- 2. Copy C2 to C2:C8

CS 021 Computers in Management

Loan Amortization Example Revisited

Problem: Referring to the Loan Amortization spreadsheet from before, cell E7 has a year number. Cell E8 should show the interest paid that year.

Answer:

Loan Amortization Example Revisited A B CS 021 Computers in Management Robert Muller Loan Amortization Principal \$400,000 Total Interest Annual Rate Years \$26,374 Amount \$3,595 \$3,595 \$3,595 \$3,595 \$3,595 \$3,595 Balance Principal Interest \$1,262 \$1,269 \$1,277 \$1,284 \$1,292 \$2,333 \$2,326 \$2,319 \$2,311 \$2,304 \$398,738 \$397,469 \$396,192 \$394,908 \$393,616

Loan Amortization Example Revisited

Problem: Referring to the Loan Amortization spreadsheet from before, cell E7 has a year number. Cell E8 should show the interest paid that year.

Answer:

- 1. F11 = IF(QUOTIENT(A11 1, 12) + 1 = E\$7, E11, "")
- 2. Copy F11 to F11:F190 3. E8 = SUM(F11:F190)

CS 021 Computers in Management

Problem: Cells A1:A100 contain 100 unique test scores. Give a formula for cell B1 that will evaluate to the second highest score.

Answer:

021 Computers in Management

Using a Work Area

Problem: Cells A1:A100 contain 100 unique test scores. Give a formula for cell B1 that will evaluate to the second highest score.

Answer:

- 1. C1 = IF(A1 = MAX(A\$1:A\$100), MIN(A\$1:A\$100), A1)
- 2. Copy C1 to C1:C100
- 3. B1 = MAX(C1:C100)

CS 021 Computers in Managemer

25

Using a Work Area

- Sometimes appropriate to leave a work area visible;
- Sometimes appropriate to hide the rows or columns making up the work area;
- Sometimes appropriate to have work area on a separate sheet.

CS 021 Computers in Management

26

Functions Related to Logical Values

- AND(formula₁, ..., formula_n) n >= 1
- OR(formula₁, ..., formula_n) n >= 1
- NOT(formula)
- NB: all formulas above should be logical

CS 021 Computers in Manageme

Truth Tables AND AND(P, Q) Р Q **FALSE FALSE FALSE FALSE** TRUE **FALSE** TRUE **FALSE FALSE** TRUE TRUE TRUE

	OR	
Р	Q	OR(P, Q)
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE
	CS 021 Computers in Management	29

Problem: Scores 80 through 89 earned a B. Give an expression for B1 that indicates whether or not the score in A1 gets a B.

Answer:

CS 021 Computers in Managemer

Example

Problem: Scores 80 through 89 earned a B. Give an expression for B1 that indicates whether or not the score in A1 gets a B.

Answer:

B1 = AND(A1 < 90, A1 >= 80)

CS 021 Computers in Managemen

Example

AND(A1 < 90, A1 >= 80)

Computers in Management

Problem: Applicants to Baldwin College are accepted if they are in the top 15% of their high school class and they either have 85th percentile SSAT scores or their GPA is 3.4 or better.

Answer:

CS 021 Computers in Management

Problem: Applicants to Baldwin College are accepted if they are in the top 15% of their high school class and they either have 85th percentile SSAT scores or their GPA is 3.4 or better.

Answer:

= IF(AND(B2<=0.15, OR(C2>=0.85, D2>=3.4)),"Accept", "Reject")

CS 021 Computers in Management

40

Example

Problem: Give a formula for cell C2 that computes the following truth table.

A2	B2	C2
FALSE	FALSE	TRUE
FALSE	TRUE	FALSE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Answer:

CS 021 Computers in Management

Example

Problem: Give a formula for cell C2 that computes the following truth table.

A2	B2	C2
FALSE	FALSE	TRUE
FALSE	TRUE	FALSE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Answer:

=OR(AND(NOT(A2), NOT(B2)), AND(A2, NOT(B2)), AND(A2, B2))

CS 021 Computers in Management

Problem: Give a formula for cell C2 that computes the following truth table.

A2	B2	C2
FALSE	FALSE	TRUE
FALSE	TRUE	FALSE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Answer:

=OR(AND(NOT(A2), NOT(B2)), A2)

CS 021 Computers in Management

Example

Problem: Give a formula for cell C2 that computes the following truth table.

A2	B2	C2
FALSE	FALSE	TRUE
FALSE	TRUE	FALSE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Answer:

=OR(A2 = B2, A2)

1 Computers in Management

Rules of the Road

If you are thinking about writing:
 IF(test, TRUE, FALSE)

write test instead.

• If you are thinking about writing: IF(test, FALSE, TRUE)

write NOT(test) instead.

CS 021 Computers in Management

15

Rules of the Road

• If you are thinking about writing:

IF(NOT(test), Ans1, Ans2)

consider writing this instead:

IF(test, Ans2, Ans1)

mputers in Management

Rules of the Road

• FYI, the following are the same:

IF(AND(test1, test2), Ans1, Ans2)
IF(test1, IF(test2, Ans1, Ans2), Ans2)

• The following are the same:

IF(OR(test1, test2), Ans1, Ans2)
IF(test1, Ans1, IF(test2, Ans1, Ans2))

CS 021 Computers in Management

Example

Problem: The number 371 is special because it is equal to the sum of the cubes of its digits. Find all 3-digit special numbers.

Answer:

CS 021 Computers in Manageme

-				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

Problem: The number 371 is special because it is equal to the sum of the cubes of its digits. Find all 3-digit special numbers.

Answer:

- 1. Put all 3-digit numbers, 000 through 999 in cells A1:A1000.
- 2. B1 gets = QUOTIENT(A1,100)
- 3. C1 gets = MOD(QUOTIENT(A1,10),10)
- 4. D1 gets = MOD(A1,10)
- 5. E1 gets = IF(A1 = B1^3+C1^3+D1^3, A1, 0)
- 6. Copy B1:E1 to B1:E1000.

CS 021 Computers in Managemen

40

Example

Problem: The number 371 is special because it is equal to the sum of the cubes of its digits.

Give a formula for H1 that tells how many 3-digit numbers are special.

Answer:

CS 021 Computers in Managemen

50

Example

Problem: The number 371 is special because it is equal to the sum of the cubes of its digits.

Give a formula for H1 that tells how many 3-digit numbers are special.

Answer:

- 1. Solve the previous problem.
- 2. H1 gets = COUNTIF(E1:E1000, "<> 0")

CS 021 Computers in Management

LOOKUP Tables

- Cascaded IFs are idiomatic.
- Lookup Tables (vertical or horizontal) capture the idiom.

VLOOKUP(key, table, index, [flag])

CS 021 Computers in Managemer

52

How VLOOKUP Works (inexact mode)

VLOOKUP(A2, \$D\$3:\$E\$6, 2)

- Starting from \$D\$3, scan down column D looking for a value that is larger than A2.
 - Values in column D must be in ascending order!
- If such a value is found in row k, then the answer is in column 2 of row k-1 of the table.

1 Computers in Management

How VLOOKUP Works (inexact mode)

VLOOKUP(A2, \$D\$3:\$E\$6, 2)

- If no such value is found, then the value of the VLOOKUP formula is in column 2 of row 6.
- If \$D\$3 > A2 (i.e., first row) then ERROR.

CS 021 Computers in Managemer

55

Lookup Tables with Exact Matching

VLOOKUP(key, table, index, FALSE)

- The key is expected to match a value in the left column exactly.
- Fourth argument of TRUE (meaning inexact match) is the default.

CS 021 Computers in Managemen

\$	Α	В	C	D	E	F				
1	My Real Esta	ate Co.		Referral Ty	ре					
2			Sales Associate	Self	Office					
3			Detz, Susan	4.50%	4.00%					
4				hidden rows						
10			Anderson, Brady	4.30%	4.10%					
11										
12	Transaction	Sale Price	Sales Associate	Referral	Commission	Net				
13	2145	\$100,000	Anderson, Brady	Self	\$4,300	\$95,700				
14	hidden ro	ws								
26	3832	\$200,000	Anderson, Brady	Office	\$8,200	\$191,800				
27	1024	\$150,000	Detz, Susan	Self	\$6,750	\$143,250				
28										
20										

\Diamond	Α	В	С	D	E	F
1	My Real Est	ate Co.		Referral Ty	/pe	
2			Sales Associate	Self	Office	
2 3 4 10			Detz, Susan	4.50%	4.00%	
4				hidden row	/S	
10			Anderson, Brady	4.30%	4.10%	
11						
12	Transaction	Sale Price	Sales Associate	Referral	Commission	Net
13	2145	\$100,000	Anderson, Brady	Self	\$4,300	\$95,700
14	hidden ro	WS				
26	3832	\$200,000	Anderson, Brady	Office	\$8,200	\$191,800
27	1024	\$150,000	Detz, Susan	Self	\$6,750	\$143,250
28						
20						
E1	3 gets					
		P(C13. \$C	\$3:\$E\$10, IF(D	13="SEL	F".2.3).FALS	SE) * B13
		(//-	, , , , ,		, ,-,,	,