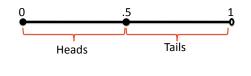
Randomness	
Robert Muller	
CS 021 Computers in Management Boston College	
boston conege	
]
Today	
Basic Ideas	
Applications and Examples	
Applications and Examples	
Monte Carlo Methods	
CS 021 Computers in Management 2	
	1
Generating Random Numbers	
0 <= RAND() < 1	
0 1 10 11 2 () 1 1	-
CS 021 Computers in Management 3	
	_


_		
Exam	n	6
LAGITI	\mathbf{v}	

Problem: Simulate the fair flip of a coin. 50% chance heads, 50% chance tails.

CS 021 Computers in Management

Example

Problem: Simulate the fair flip of a coin. 50% chance heads, 50% chance tails.

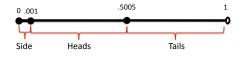
CS 021 Computers in Management

Example

Problem: Simulate the fair flip of a coin. 50% chance heads, 50% chance tails.

Solution:

if(rand() < .5, "Heads", "Tails")</pre>


CS 021 Computers in Manageme

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

CS 021 Computers in Management

Example

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

CS 021 Computers in Managemen

Example

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

Solution?:

if(rand() < 1%/10,
 "Side",
 if(rand() < .5, "Heads", "Tails"))</pre>

CS 021 Computers in Management

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

Solution:

```
if(rand() < 1\%/10,
   "Side",
   if(rand() < .5, "Heads", "Tails"))</pre>
```

CS 021 Computers in Management

Example

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

Solution?:

```
A1 = rand()
     if(A1 < 1%/10,
          "Side",
          if(A1 < .5, "Heads", "Tails"))
```

CS 021 Computers in Management

Example

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

Solution?:

```
49.9%
                                        50%
A1 = rand()
     if(A1 < 1%/10,
         "Side",
         if(A1 < .5, "Heads", "Tails"))
```

CS 021 Computers in Management

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for fleads or tails.

Solution?: 49.9% 50%

A1 = rand()

if(A1 < 1 %/10,

"Side",

if(A1 < .5, "Heads", "Tails"))

CS 021 Computers in Management

Example

Problem: Simulate the flip of a coin. There is a 1/10 of 1% chance that it will land on its side and otherwise equal chances for heads or tails.

Solution: 49.95% 49.95% A1 = rand() if(A1 < 1%/10, "Side", if(A1 < .5 + .005, "Heads", "Tails"))

CS 021 Computers in Management

Example

Problem: Flip a coin 1000 times. Put a forumla in A1 that evaluates to the longest streak of the same side.

CS 021 Computers in Management

Problem: Flip a coin 1000 times. Put a forumla in A1 that evaluates to the longest streak of the same side.

Solution:

- 1. B1:B1000 gets if(rand() < .5, "Heads", "Tails")
- 2. C1 gets 1
- 3. C2 gets if(B1 = B2, C1 + 1, 1)
- 4. Copy C2 to C2:C1000
- 5. A1 gets MAX(C1:C1000).

CS 021 Computers in Managemen

16

Generating Random Integers

0 <= rand() < 1

0 <= N * rand() < N

INT(N * rand()) in {0, ..., N − 1}

RandBetween(0, N-1)

CS 021 Computers in Management

17

Example

Problem: Roll two dice 10 times.

Solution:

- 1. A1 gets 1 + INT(6 * RAND())
- 2. Copy A1 to A1:B10

CS 021 Computers in Management

Problem: There are 36 possible outcomes of the roll of 2 dice. There is 1 way to roll a 2. There are 2 ways to roll a 3, 3 ways to roll a 4, 4 ways to roll a 5, 5 ways to roll a 6 and 6 ways to roll a 7. How close are the expected outcomes when rolling the dice 1000 times?

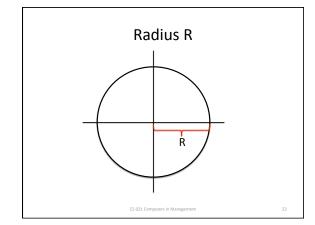
CS 021 Computers in Manageme

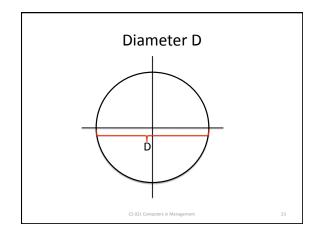
19

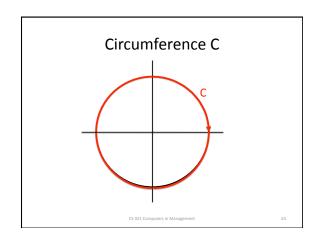
Example

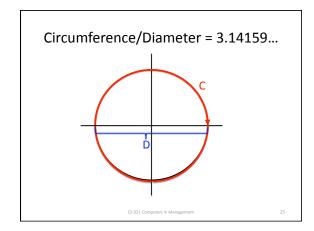
Problem: There are 36 possible outcomes ... Solution:

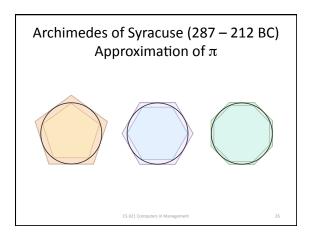
- 1. A1:B1000 gets 1 + INT(6 * RAND())
- 2. C1:C1000 gets Ai + Bi
- 3. D1:D6 gets 1 thru 6, D7:D11 gets 5 thru 1.
- 4. E1 gets COUNTIF(C\$1:C\$1000, "=D1")
- 5. Copy E1 to E1:E11

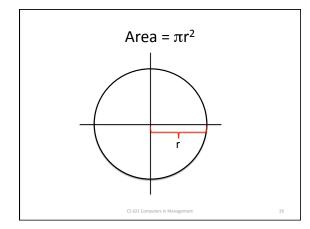

CS 021 Computers in Management

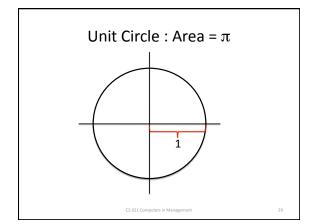

20

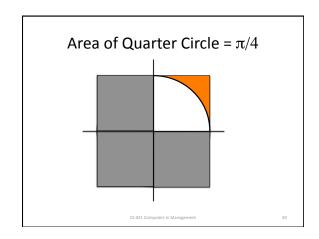

Monte Carlo Methods

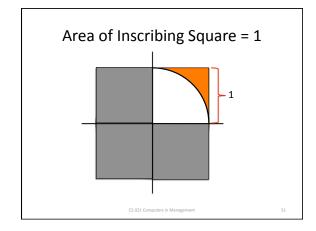

- A method of statistical sampling employed to approximate solutions to quantitative problems.
- Due to John von Neumann and Stanislaw Ulam (1946).

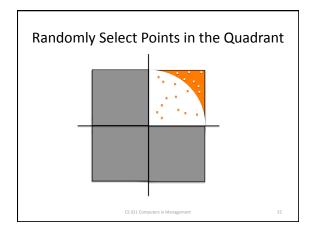

CS 021 Computers in Management

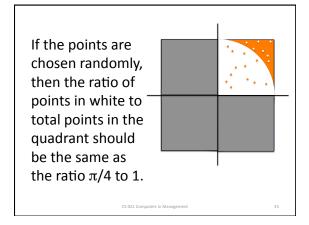


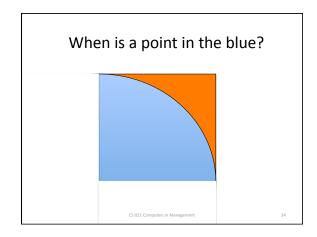


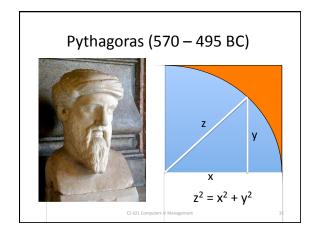


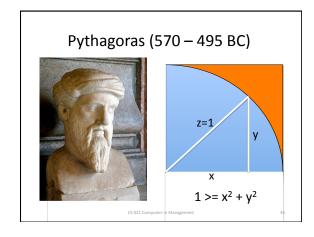












So ...

- A point p = (x, y) in the inscribing square is in the quarter circle if x² + y² <= 1.
- We can choose random points in the unit circle by choosing x and y randomly.
- I.e., exactly when rand()^2 + rand()^2 <= 1.

CS 021 Computers in Managemen

\rightarrow	Α	В	С	
1	Monte Carlo Approximation of Pi			
2	Robert Muller			
3	CS 021 Computers in Management			
4				
5	Points	10000		
6				
7	Approxmation	3.1416		
8				
9	x	У	distance	
10	0.59912552	0.74215931	0.95380911	
11	0.39293882	0.45616591	0.60206997	
10	0 10010110	0.00700446	0 00000047	
		CS 021 Computers in Management		38