1.6 I actually meant to assign 1.7! The examples in 1.6 don't especially lead themselves to more efficient nondeterministic solutions. Although it's not officially assigned you should definitely do 1.7.

1.60

$$Q = \{0, 1, \ldots, k\}$$
$$\Sigma = \{a, b\}$$
$$q_0 = 0$$
$$F = \{k\}$$
$$\delta(0, b) = \{0\}$$
$$\delta(0, a) = \{0, 1\}$$
$$\delta(i, a) = \delta(i, b) = \{i + 1\} \text{ for } 0 < i < k.$$
1.16

(a)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>{1, 3}</td>
</tr>
<tr>
<td>3</td>
<td>{1, 2}</td>
<td>{1, 2, 3}</td>
</tr>
</tbody>
</table>

\(\emptyset \emptyset \emptyset \)

It's not obvious that the original NFA accepts all strings that start with a, but it does!

(b) e-closures:

1. \{1, 2\}
2. \{2\}
3. \{3\}

State transitions

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{3}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>{4, 2}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>{2}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>{4, 2}</td>
<td>{4, 2, 3}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{4, 3}</td>
<td>{4, 2, 3}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>{2, 3}</td>
<td>{1, 2}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

\(a \quad b \quad a,b \)
1.61 Suppose M is a DFA that recognizes C_k. Let v_1, v_2 be two strings of length k with $v_1 \neq v_2$. Let q_1, q_2 be the states of M that you arrive at, starting from the initial state and reading v_1, v_2, respectively. Since the two strings are different, there is some position at which v_1 contains a and v_2 contains b, or vice-versa:

$$v_1 = xay,$$
$$v_2 = x'y'y', \text{ with } 1x1 = 1x'y'1$$

Let z be any string of length $k - 1y1 - 1$. Then $v_1 z \in C_k$, $v_2 z \notin C_k$. Thus $v_1 z$ and $v_2 z$ lead from the initial state to different states $p_1, p_2 \notin M$. You get to p_1 by starting in q_1 and reading z. You get to p_2 by starting in q_2 and reading z.
So \(q_1 \neq q_2 \).

Thus the number of states must be at least as large as the number of strings of length \(k \), since we just proved that distinct strings of length \(k \) lead to distinct states from \(q_0 \).

So the number of states of \(M \geq 2^k \).

1.43

Start with an automaton \((Q, \Sigma, \delta, q_0, F)\) for \(A\). (Assume \(A \) is a DFA.)

We make a second copy of \(M\).

For every edge in \(M \) labeled by a letter \(\alpha \) from state \(q_1 \) to \(q_2 \), add an edge labeled \(\alpha \) from \(q_1 \) to the copy of \(q_2 \). The initial state of the new device is the original initial state. The accepting states are the copies of the original accepting state.
Formally:

\[M' = (Q \times \{0,1,3\}, \Sigma, S', (q_0, 0), F \times \{0,1\}) \]

where

\[S'(q, 0, a) = \{(s(q, a), 0)\} \]

\[S'(q, 1, a) = \{(s(q, a), 1)\} \]

\[S'(q, 0, \varepsilon) = \bigcup_{a \in \Sigma} \{(s(q, a), 1)\} \]

Do you see how this works? In order for a path to be successful in \(M' \), it must cross over from \(Q \times \{0\} \) to the copy \(Q \times \{1\} \). The cross-over point corresponds to a dropped-out letter in a successful path of the original device.

1.17 We did this in class. When constructing the NFA in (a), it's advisable to short-cut some of the steps in the construction outlined in the text, lest we get too many \(\varepsilon \)-transitions.
In class, I used something like

\[
\begin{array}{cccc}
& 0 & 1 & \\
\downarrow & \downarrow & \downarrow & \\
1 & \{2\} & \emptyset & \\
2 & \{3\} & \{4, 33\} & \\
3 & \{4, 43\} & \emptyset & \\
4 & \emptyset & \emptyset & \\
5 & \emptyset & \{1, 6\} & \\
6 & \emptyset & \emptyset & \\
\emptyset & \emptyset & \emptyset & \\
\{1, 3\} & \{2, 43\} & \emptyset & \\
\{2, 4\} & \emptyset & \{4, 63\} & \\
\{4, 3\} & \{2, 5\} & \{1, 3\} & \\
\{1, 6\} & \{2\} & \emptyset & \\
\{2, 5\} & \{5\} & \{1, 3, 6\} & \\
\{1, 3, 6\} & \{1, 2, 43\} & \emptyset & \\
\end{array}
\]
1.18 I left off f-h, as we worked these in class. f) seems to require brilliant insight or special techniques which were presented later. Note correct answers are not Unique!

(a) \(1(001)^*0\)
(b) \(0^*10^*10^*1(001)^*\)
(c) \((001)^*0101(001)^*\)
(d) \((001)(001)0(001)^*\)
(e) \(0((001)(001))^* U 1(001)(001)(001)^*\)
(f) \((1(001)^*)(001 U 3)\)
(g) \(00^*100^* U 000^*10^* U 0^*1000^* U 000^*\)
(h) \(\emptyset\)
(i) \((1^*01^*01^*)^* U 0^*10^*10^*\)
(j) \((001)(001)^*\)
Again, correct answers are not unique.

In
\[a^*b^* \]
\[a(ba)^*b \]
\[a^*ub^* \]
\[(aaa)^* \]
\[abu^*b^* \]
\[ababvbab \]
\[(\epsilon^*a)^*b \]
\[(\epsilon^*uvu^*b)^* \]

Out
\[ba, bba \]
\[b, a \]
\[ab, ba \]
\[a, \epsilon \]
\[aa, ba \]
\[\epsilon, b. \]