
New Applications of the Wreath Product of Forest Algebras

Howard Straubing
Computer Science Department, Boston College

Chestnut Hill, Massachusetts, USA 02467
straubin@cs.bc.edu∗

July 31, 2012

Abstract

We give several new applications of the wreath product of forest algebras to the study of
logics on trees. These include new simplified proofs of necessary conditions for definability
in CTL and first-order logic with the ancestor relation; a sequence of identities satisfied by
all forest languages definable in PDL; and new examples of languages outsideCTL, along
with an application to the question of what properties are definable in both CTL and LTL.

1 Introduction

The present paper is part of an ongoing effort to understand what properties of finite labeled
trees are expressible in first-order logic and related logics (e.g., CTL, CTL∗, PDL). Recently,
some progress has been made in approaching such problems through algebraic means. The idea
is that one associates to a given regular tree language L a finite algebra (called the syntactic
forest algebra of L) in much the same way that the syntactic monoid is associated to a regular
language of words. Definability of L in a given logic is often reflected in computable properties
of the associated algebra. This approach has led to effective characterizations of the properties
definable in a number of logics (e.g., the temporal logics EF and EX [3, 7], first-order logic with
successor [1], boolean combinations of Σ1-languages [6], among others). For those logics for
which such an effective test is still lacking, the algebraic method has led to the formulation of
necessary conditions for definability [7] and consequent proofs that certain properties cannot be
expressed in a logic.

The results of Bojaǹczyk, Straubing and Walukiewicz [7], in particular, use the wreath prod-
uct of forest algebras as the principal tool. Here we continue this line of work, providing a
number of novel examples of how these algebraic tools can be applied. Our principal results are
the following.
∗Research partially supported by National Science Foundation Grant CCF-0915065

1

• We give simple new proofs of effective necessary conditions for definability in CTL and
first-order logic with the ancestor relation. These appear in [7] as the absence of cer-
tain kinds of ‘vertical confusion’. Our proof takes advantage of some natural expansion
operations on forest algebras, which are of independent interest.

• We provide a sequence of identities that must be ultimately satisfied by the syntactic forest
algebra of any language in CTL∗ or PDL. These idenitities are a kind of generalized dis-
tributive law. We apply these results to show that there are languages in EF of arbitrarily
high operator complexity within PDL, as well as a new proof that certain languages are
not definable in FO[≺]. While the non-definability results are known, the formulation in
terms of identities is new.

• We consider the question of the overlap between LTL and CTL, previously studied by
Maidl [10] and Bojaǹczyk [5]. We show that certain forest languages are outside CTL
by methods that appear to be fundamentally new. We apply these to characterize the finite
monoids M with the property that if L is any regular language of words recognized by
M, then the set of forests with a maximal path in L is definable in CTL.

Our results, especially those concerning the generalized distributive laws and the overlap of
CTL and LTL, suggest a number of open problems, which we discuss in the conclusion.

The paper illustrates the advantages of studying problems about logical expressibility in an
algebraic setting. Once the machinery of forest algebras is in place, the applications to logic
follow in a straightforward manner. The algebra is thus a source of new insights as well as
a valuable complement to more traditional model-theoretic methods like Ehrenfeucht-Fraı̈ssé
games.

In Section 2 we provide a brief review of the algebraic model. We also take this opportunity
to correct an error in the proof of a fundamental fact about division of finite forest algebras that
appeared in [7]. Section 3 gives the definitions of the logics we consider in this paper. Because
we deal with unranked finite forests, rather than infinite trees, the definitions of languages like
CTL look somewhat different in this setting from the traditional formulations.

In Sections 4-6 we provide our applications. Section 4 shows how the ‘vertical confusion’
criteria of [7] can be formulated and proved in a simple, natural fashion by using certain ex-
pansions of forest algebras. In Section 5 we establish identities that must be satisfied by forest
languages in PDL, and use them to prove some non-definability and hierarchy results. In Sec-
tion 6 we take up the question of the overlap between CTL and LTL. The concluding section
lists some open problems.

2 Preliminaries

There are by now many basic surveys and a few books on the algebraic theory of automata over
words, including the syntactic monoid, variety theory, and the ideal structure of finite semi-
groups. We refer the reader to Pin [12, 13].

Forest algebras are much newer. Most of the basic material on these algebras and our partic-
ular approach to logics on trees can be found in Bojaǹczyk, et. al., [3, 7]. Here we repeat some

2

of the principal definitions.

2.1 Trees and forests

LetA be a finite alphabet. We define trees and forests overA by mutual recursion: If s is a forest
and a ∈ A, then as is a tree. If t1, . . . , tn is a finite sequence of trees, then t1 + · · · + tn is a
forest. The recursion gets started with the empty sequence of trees, whose sum we denote by 0.
Thus a forest is a formal expression like

a(b0 + ca0) + ba(c0 + a0 + b(c0 + a0)),

where a, b, c ∈ A. We usually drop the 0’s when we write such expression. We draw the forest
in the obvious fashion as in Figure 2.1.

Figure 2.1: The forest a(b+ ca) + ba(c+ a+ b(c+ a))

We then adopt the standard tree terminology, and write about nodes, children, parents, an-
cestors and descendants of nodes, the subtree rooted at a node, and the forest of a node, which
consists of all the strict descendants of a node. We write tx for the subtree rooted at the node
x. and fx for the forest of x. The set of all forests over A, is denoted HA. HA forms a monoid,
with 0 as the identity element. Observe that the operation + is noncommutative.

2.2 Contexts

If we replace one leaf of a forest by a hole, denoted �, we obtain a context. Figure 2.2 shows
several contexts, both as diagrams and as formal expressions.

Figure 2.2: The contexts a(b(c+ �) + ca), � + a(b(c+ a) + ca), and �.

3

We denote the set of all contexts over A by VA. Let p, q ∈ VA, and x ∈ HA. We obtain a
new context pq upon replacing the hole in p by q, and a new forest ps upon replacing the hole in
p by s. With these operations we have

(pq)r = p(qr),

�p = p� = p,

p(qs) = (pq)s,

�s = s,

for any p, q, r ∈ VA; s ∈ HA. Thus VA forms a monoid with respect to substitution, with � as
the identity, and substitution of a forest in a context defines a left action of the monoid VA on
HA. (We emphasize that this is an action of a monoid on the set HA: the operation in HA plays
no role here.)

2.3 Forest algebras

The pair (HA, VA) is an instance of a special kind of algebraic structure, called a forest algebra,
first introduced by Bojanczyk and Walukiewicz in [3]. In general, a forest algebra is a pair
(H,V) satisfying the following properties:

• H is a monoid. The operation in H is written additively, and its identity element is ac-
cordingly denoted 0.

• V is a monoid. The operation in V is written multiplicatively, so its identity is usually
denoted 1. (In some specific instances, as in the forest algebra (HA, VA), the identity is
denoted �.)

• There is a left action of the monoid V on the set H. This means

(v1v2)h = v1(v2h), 1 · h = h,

for all v1, v2 ∈ V, h ∈ H.

• The action is faithful. That is, if v1h = v2h for all h ∈ H, then v1 = v2.

• Let g ∈ H. Then there exist elements of V, which we denote 1 + g and g + 1, such that
for all h ∈ H,

(g + 1)h = g + h, (1 + g)h = h.

In the case of (HA, VA), these elements are contexts of the form � + s, and s+ �, where
s is a forest, (See, for example, the second context in Figure 2.2.) Since ((g + 1)v)h =
(g + 1)vh = g + vh for v ∈ V, we denote (g + 1)v by g + v, and similarly write v + g
for (1 + g)v.

4

We call H the horizontal monoid of (H,V), and V the vertical monoid, A homomorphism
α : (H1, V1)→ (H2, V2) is actually a pair of monoid homomorphisms

αH : H1 → H2, αV : V1 → V2

that also respects the left action, in other words,

αV (v)αH(h) = αH(vh)

for all v ∈ V, h ∈ H. Usually we drop the subscripts H and V and simply write α for both
components. Observe that if α maps onto V2, then it maps onto H2 as well, since we then have
for any h ∈ H2,

h = (1 + h) · 0 = αV (v) · 0 = αV (v)αH(0) = αH(v · 0)

for some v ∈ V1. Similarly, if two homomorphisms agree on the vertical monoid of the domain,
they agree on the horizontal monoid.

(HA, VA) is called the free forest algebra on A, and is also denoted A∆. The free forest
algebra has the following universal property: If (H,V) is a forest algebra, and f : A → V is
any function, then there is a unique homomorphism α : A∆ → (H,V) such that α(a�) = f(a)
for all a ∈ A.

We now discuss a critical relation on forest algebras called division. Let (H1, V1), (H2, V2)
be forest algebras, and let H ′ be a submonoid of H2, V

′ a submonoid of V2, such that V ′

contains all contexts 1 + h, h+ 1 with h ∈ H ′ and V ′H ′ ⊆ H ′. We call (H ′, V ′) a subalgebra
of (H2, V2), although strictly speaking it may fail to be a forest algebra, since V ′ might not act
faithfully on H ′. We say (H1, V1) divides (H2, V2) and write (H1, V1) ≺ (H2, V2), if there is
such a subalgebra, together with an onto homomorphism α : (H ′, V ′)→ (H1, V1).

The theorem below gives an equivalent characterization of division. This is very close to,
and in fact is slightly stronger than, a similar result (Lemma 4.2) of [7]. It is worth giving a
careful proof, since there is a gap in the argument in [7], which is not entirely trivial to fill.

Theorem 1 Let A be a finite alphabet, and ψ a homomorphism from A∆ onto a forest algebra
(H1, V1). Then (H1, V1) ≺ (H2, V2) if and only if there exists a submonoid K of H2, an onto
monoid homomorphism Φ : K → H1, and for each a ∈ A, an element â of V2 such that
âK ⊆ K, and Φ(âh) = ψ(a�)Φ(h) for all h ∈ K.

Proof
One direction is trivial: If (H1, V1) ≺ (H2, V2), then the horizontal part of the forest algebra
homomorphism Φ from a subalgebra (K,W) of (H2, V2) onto (H1, V1) provides us with the
monoid homomorphism Φ : K → H1. Further, for each a ∈ A, there is an element â ∈ W
such that Φ(â) = ψ(a�), and the desired property follows from the definition of forest algebra
homomorphisms.

Conversely, suppose we have a homomorphism Φ : K → H1, and a map a 7→ â as in the
statement of the theorem. By the universal property of free forest algebras, this map determines
a unique homomorphism α : A∆ → (H2, V2). We claim that for all s ∈ HA, α(s) ∈ K, and
Φα(s) = ψ(s). In particular, α(s) = α(s′) implies ψ(s) = ψ(s′).

5

Assuming the claim is true, let us see how it implies (H1, V1) ≺ (H2, V2). We set

H ′ = {α(p · 0) : p ∈ VA},

V ′ = {α(p) : p ∈ VA}.
By the claim, H ′ is contained in K. H ′ is a submonoid of K, since

α(p · 0) + α(q · 0) = α(p · 0 + q · 0)
= α((p+ q · 0) · 0)
∈ H ′,

and 0 = α(1 · 0) ∈ H ′. V ′H ′ ⊆ H ′, because α(p)α(q · 0) = α((pq) · 0). If h ∈ H ′, then
h = α(p · 0) for some p ∈ VA, and thus 1 + h = α(� + p · 0) ∈ V ′, and likewise h+ 1 ∈ V ′.
Thus (H ′, V ′) is a subalgebra, in the sense described above. We now define a pair of maps, both
denoted θ, from H ′ to H1 and from V ′ to V1. If h = α(p · 0) for some p ∈ VA, then we set
θ(h) = ψ(p · 0). By our claim above, this is well-defined. θ is a homomorphism from H ′ to H1,
because if s = α(p · 0), t = α(q · 0), we have

θ(s+ t) = θ(α(p · 0) + α(q · 0))
= θ(α((p+ q · 0) · 0))
= ψ((p+ q · 0) · 0)
= ψ(p · 0 + q · 0)
= ψ(p · 0) + ψ(q · 0)
= θ(s) + θ(t).

If v ∈ V ′ and v = α(p), then we set θ(v) = ψ(p). We must show that this is well-defined: If
α(p) = α(q) and h ∈ H1, then h = ψ(s) for some s ∈ HA. Thus α(ps) = α(qs), so our claim
gives

ψ(p)h = ψ(ps) = ψ(qs) = ψ(q)h,

and since h was arbitrary, faithfulness gives ψ(p) = ψ(q). It is straightforward to verify that θ
is a monoid homomorphism from V ′ to V1, and that it preserves the left action and maps onto
V1. Thus (H1, V1) ≺ (H2, V2).

It remains to establish the claim. We prove by induction on the number of nodes in a forest
s ∈ HA that Φ(α(s)) = ψ(s). This is true if s is the empty forest 0. If s is nonempty, it can
either be written as s1 + s2, where s1 and s2 both have fewer nodes than s, or as as′, where
a ∈ A and s′ ∈ HA has fewer nodes than s. In the first case, Φα(s1 + s2) = ψ(s1 + s2) follows
immediately from the inductive hypothesis and the fact that Φ, α and ψ are homomorphisms. In
the second case, the inductive hypothesis and the property of â give

Φ(α(as′)) = Φ(α(a)α(s′))
= Φ(âα(s′))
= ψ(a�)Φ(α(s′))
= ψ(a�)ψ(s′)
= ψ(as′).

6

�

As mentioned above, there is a very similar theorem in [7] (essentially the case where
the alphabet A is identical to V and ψ extends the identity map on A). In the proof of that
result, it is claimed without justification that if αi : A∆ → (Hi, Vi) for i = 1, 2, are forest
algebra homomorphisms, and if for all p, q ∈ VA, α1(p) = α1(q) implies α2(p) = α2(q), then
(H1, V1) ≺ (H2, V2). While the analogous property for semigroup or group homomorphisms is
trivial, in the forest algebra setting it requires a careful argument.

2.4 Forest languages and syntactic forest algebra

A set L ⊆ HA is called a forest language. Let α : A∆ → (H,V) be a homomorphism, and let
X ⊆ H. We say that L = α−1(X) is recognized by α, and also that it is recognized by (H,V).
If L is recognized by a finite forest algebra, then we say that L is a regular forest language. This
coincides with the usual notions of regularity for unranked trees (see, for example, Libkin [9]):
While we deal with forests rather than trees, L is a regular forest language in our formulation if
and only if aL is a regular tree language for all a ∈ A.

If L ⊆ HA then we define an equivalence relation ∼L on HA, called the syntactic con-
gruence of L, by setting s1 ∼L s2 if the sets {p ∈ VA : psi ∈ L} for i = 1, 2 are equal.
This equivalence is compatible with the addition in HA, and contexts in VA act on equivalence
classes in a well-defined manner. We thus obtain a homomorphism ηL : A∆ → (HL, VL),where
HL = HA/ ∼L, and VL is obtained by collapsing VA to make the action on HL faithful. ηL and
(HL, VL) are called, respectively, the syntactic morphism and syntactic forest algebra of L. We
have the following fundamental theorem, an analogue of well-known properties of the syntactic
monoids of word languages:

Theorem 2 Let L ⊆ HA. A homomorphism α : A∆ → (H,V) recognizes L if and only if for
all s, t ∈ HA, α(s) = α(t) implies s ∼L t.

In particular, (HL, VL) divides any forest algebra recognizing L, and (HL, VL) is finite if
and only if L is a regular forest language.
State diagrams for forest algebras. This paper contains a number of diagrams illustrating the
syntactic forest algebras of various languages, and more generally homomorphisms α from A∆

onto a finite forest algebra (H,V). Here we describe some of the conventions we use in these
diagrams. Nodes in the diagram represent elements of H. We draw an arrow labeled a from h
to h′ if and only if α(a)h = h′. The resulting labeled digraph, together with the addition in H,
completely determine both α and the algebra (H,V). In the case where α = ηL is the syntactic
morphism of a forest language L, L itself is a union of ∼L classes, and we will indicate a class
in L by a doubled circular boundary on the corresponding node. Very often, we can simplify
the presentation by stipulating some additional properties: For instance, most of the examples in
this paper will have H idempotent and commutative. In this case, we can label the nodes in such
a manner that the addition in H is easily inferred from the label. For example, the set of forest
algebras over {a, b} in which some maximal path is in a∗b has its syntactic forest algebra given
by the diagram in Figure 2.3. Here we need to stipulate one additional piece of information not
implicit in the transitions or in the node labels 0 and∞: namely that α+ α = α.

7

Figure 2.3: A forest algebra diagram. Here α+ α = α.

Wreath products. The wreath product is an operation on transformation monoids that extends in
a straightforward manner to forest algebras. Given forest algebras (H1, V1), (H2, V2) we define
a new forest algebra

(H1, V1) ◦ (H2, V2) = (H1 ×H2, V1 × V H1
2).

The addition in H1 ×H2 is simply the direct product, and the action is given by

(v, f) · (h1, h2) = (vh1, f(h1)h2).

It is easy to verify (see [7]) that (H1, V1) ◦ (H2, V2) is indeed a forest algebra. The wreath
product of forest algebras is associative.

3 Logics for forest languages

3.1 First-order and generalized temporal logics for forests.

We describe some predicate and temporal logics for forests. While these are by and large well
known, they are often encountered in the setting of infinite trees, rather than finite forests, where
the definitions look a bit different.
First-order logic. Let A be a finite alphabet. Variables in first-order formulas represent nodes
in a forest. The atomic formulas are of two kinds: Qax, where a ∈ A, means that node x is
labeled a, while x ≺ y means node x is a (not necessarily strict) ancestor of node y. We can thus
interpret sentences (formulas with no free variables) in forests. We write s |= φ if the sentence
φ is true when interpreted in s ∈ HA, and denote by Lφ the set of all s ∈ HA such that s |= φ.
We also say that the sentence φ defines the language Lφ.

For example, the set of all forests in which some maximal path belongs to a∗b is defined by
the sentence

∃x(Qbx ∧ ∀y(x ≺ y → x = y) ∧ ∀y(y ≺ x→ x = y ∨Qay)).

The subformula ∀y(x ≺ y → x = y) says that x is a leaf node, and the subformula ∀y(y ≺
x→ x = y ∨Qay) says that every strict ancestor of x is labeled a.

We denote both the family of languages defined by such sentences, as well as the family of
sentences itself, by FO[≺].

8

Generalized temporal logic. Our temporal formulas come in two flavors—tree formulas and
forest formulas. The syntax and semantics of both kinds of formulas are defined by mutual
recursion. The syntax is given by these rules:

• If a ∈ A, then a is a tree formula.

• Every forest formula is a tree formula.

• > and ⊥ are forest formulas.

• If φ, ψ are tree formulas (respectively, forest formulas), then so are φ∨ψ, φ∧ψ, and ¬φ.

• Let ψ1, . . . , ψk−1 be a collection of tree formulas. We define new tree formulas φ1, . . . , φk
by setting

φ1 = ψ1,

φi = ψi ∧
∧
j<i

¬ψj ,

for 1 < i < k, and
ψk =

∧
j<k

¬ψj .

A family Φ = {φ1, . . . , φk} constructed in this way is said to be unambiguous. We
treat such an unambiguous collection of formulas as a finite alphabet, and take a regular
language of words K ⊆ Φ∗. Then EK is a forest formula.

We interpret forest formulas in forests, and tree formulas in trees, and therefore we have
two notions, |=forest and |=tree . The rules defining these semantic relations parallel those given
above for the syntax.

• Let a ∈ A, and t a tree over A. Then t |=tree a if and only if t = as, for some s ∈ HA.
(That is, the root node of t is labeled a.)

• Let φ be a forest formula, a ∈ A, and s ∈ HA. Then as |=tree φ if and only if s |=forest φ.
(In other words, a tree t tree-satisfies φ if and only if the forest fx of its root node x
forest-satisfies φ.)

• For all s ∈ HA, s |=forest > and s 6|=forest ⊥.

• Boolean connectives∨,∧,¬ have their usual meanings for both tree-satisfaction and forest-
satisfaction.

• Let Φ be an unambiguous family of tree formulas, and let K ⊆ Φ∗. Let s ∈ HA. By the
way the formulas of Φ were constructed, we can label each node x of s by the unique
φ ∈ Φ such that tx |=tree φ. Then s |=forestEK if and only if there is a path of nodes
x1 · · ·xr beginning at a root of s (but not necessarily extending all the way to a leaf)
whose sequence of labels φ1 · · ·φr belongs to K.

9

We give some examples of how this formalism is used.

Example: LetA = {a, b}. The unambiguous set Φ constructed from the single tree formula a is
then just {a,¬a}, and since we are working over {a, b}, this is equivalent to taking Φ = {a, b}.
Let K be the word language a∗b. Then EK is satisfied by the forests that contain a node labeled
b. Observe that this is not the same thing as the set of forests in which there is a maximal path in
a∗b, which we saw in an earlier example. We abbreviate the formula EK by EFb.
Example: More generally, if ψ is any tree formula, then the forest formula E((¬ψ)∗ψ) defines
the set of all forests in which some node tree-satsifies ψ. We denote this formula EFψ.
Example: Again let A = {a, b}. The forest formula emp = ¬(EFa ∨ EFb) is satisfied only by
the empty forest. (We can similarly define emp for any finite input alphabet A.) Let ψ1 be the
tree formula a, and ψ2 the tree formula b ∧ emp. The unambiguous family Φ constructed from
{ψ1, ψ2} is therefore {ψ1, ψ2,¬ψ1∧¬ψ2}. Observe that the tree rooted at a node x tree-satisfies
ψ2 if and only if x is a leaf labeled b. The set of forests with a maximal path in a∗b is thus defined
by the forest formula E(ψ∗1ψ2).
Example: Let ψ be any tree formula, so that Φ = {ψ,¬ψ} is the unambiguous family con-
structed from {ψ}. The forest formula Eψ(ψ ∪ ψ)∗ thus defines the set of forests in which the
tree rooted at some root node satisfies ψ. We abbreviate this formula EXψ. So, for instance, in
the simplest case A = {a, b}, the forest formula EXa defines the set of forests in which some
root node is labeled a, and the tree formula EXa is satisfied by those trees in which some child
of the root is labeled a.

This extended temporal logic has been variously called ‘chain logic’ or ‘propositional dy-
namic logic’, although these terms were originally introduced in other contexts. We will use
PDL here to maintain consistency with the notation of [7]. If we restrict application of the
operator EK to word languages K that are themselves definable by first-order sentences over
<, we obtain the logic CTL∗.

Let φ, ψ be any tree formulas. The unambiguous family Φ obtained from {φ, ψ} is {φ, ψ ∧
¬φ,¬ψ ∧ ¬φ}. We write EψUφ as an abbreviation for the forest formula E(ψ ∧ ¬φ)∗φ. If
s ∈ HA then s |=forest EψUφ if and only if there is a node x such that tx |=tree φ, and for all
ancestors y of x, ty |=tree ψ. In other words, there is a path on which ‘ψ holds until φ’.

CTL denotes the family of languages definable by formulas in which application of the EK
operator is restricted to have this form. We also denote by CTL the family of such formulas.
Note that we can recover both the EX and EF operators in CTL, since EXψ is equivalent to
E⊥Uψ, and EFψ is equivalent to E(¬ψ)Uψ.

The family of forests over {a, b} with a maximal path in a∗b is defined by the CTL formula
EaU(b∧ emp). Using a similar trick, we can show how to obtain a kind of universal quantifica-
tion within CTL: Usually CTL is defined for infinite trees, and traditional treatments include
another operator, that allows one to express ‘there exists a maximal path that does not satisfy “ψ
until φ” ’. To see how to do this in our present framework for finite forests, we may assume that
ψ is equivalent to ψ ∧ ¬φ, as this does not change the meaning of ‘ψ until φ’, and set ρ to be
¬ψ∧¬φ.A maximal path that does not satisfy ‘ψ until φ’ either has the property that every node
satisfies ψ, or there is a node satisfying ρ such that every strict ancestor of the node satisfies ψ.
Thus the existence of such a path is given by the formula

10

Figure 3.1: The forest algebra U2

EψU(ψ ∧ emp) ∨ EψUρ.

There is an important subtlety here. Consider the property ‘there are two consecutive b’s’,
which is the same as ‘there is a maximal path with two consecutive b’s’. One might expect the
negation trick just described to allow us to express ‘there exists a maximal path without two
consecutive b’s’. However when write the original property as

EF(b ∧ EXb).

and apply the negation trick , we get the formula

E¬(b ∧ EXb)U(¬(b ∧ EXb) ∧ emp),

which simplifies to
E¬(b ∧ EXb)Uemp.

This says that there is a maximal path along which every node is either a, or is labeled b but has
no child labeled b.Observe that this is not the same thing as ‘there is a maximal path without two
consecutive b’s’. For example, the forest b(b + a) has a maximal path without two consecutive
b’s, but does not satisfy the formula. As we shall see later on (Theorem 13), the property ‘there
exists a maximal path without two consecutive b’s’ is not expressible in CTL.

3.2 Wreath product characterization of logically defined families

The principal result of [7] is a characterization of the languages definable in these logics in
terms of iterated wreath products of certain basic forest algebras. We state the relevant parts of
this theorem below.

We say that a finite forest algebra (H,V) is horizontally idempotent and commutative ifH is
an idempotent and commutative monoid. (H,V) is distributive if v(h1 +h2) = vh1 +vh2 holds
for all v ∈ V ; h1, h2 ∈ H. (H,V) is aperiodic if V is an aperiodic monoid (i.e., V contains no
nontrivial groups) and (H,V) is flat if H is commutative and V = {1 + h : h ∈ H}.

The forest algebra U2 is given by Figure 3.1
The conventions about the use of the symbols 0 and∞ imply that U2 is horizontally idem-

potent and commutative. The diagram only shows generators c0, c∞ of the vertical monoid, but

11

it is easy to verify that apart from the identity, these are the only elements, since cxcy = cx for
any x ∈ {0,∞}, and 1 + 0 = 1, 1 +∞ = c∞. U2 is distributive and aperiodic, but not flat.

We associate to various logics L a family AL of basic forest algebras, as follows:

• APDL consists of the horizontally idempotent and commutative, distributive forest alge-
bras.

• ACTL∗ consists of the algebras in APDL that are also aperiodic.

• AFO[≺] consists of the algebras in APDL together with the flat aperiodic algebras.

• ACTL = {U2}.

Theorem 3 LetA be a finite alphabet, and letL ⊆ HA. LetL be any of the logicsPDL,CTL∗, FO[≺
], CTL. Then L is definable in L if and only if it is recognized by a wreath product

(H1, V1) ◦ · · · ◦ (Hk, Vk),

where each (Hi, Vi) is in AL.

(It should be pointed out that the statement of this theorem in [7] for the logic FO[≺]is
slightly different: There, only one kind of base algebra for FO[≺] is given: these are called
aperiodic path algebras. However, it is easier to prove this modified statement of the theorem,
using identical techniques.)

We give a refined version of this theorem for the logics PDL and CTL∗. Let k > 0. We
define PDLk to consist of those languages in PDL defined by formulas in which the depth of
nesting of the EK operator is no more than k, and define CTL∗k analogously.

Theorem 4 Let A be a finite alphabet, and let L ⊆ HA. Let k > 0. Then L is definable in
PDLk (respectively, CTL∗k) if and only if it is recognized by a wreath product

(H1, V1) ◦ · · · ◦ (Hk, Vk),

where each (Hi, Vi) is in APDL (respectively ACTL∗).

Proof
We merely sketch how the argument in [7] needs to be modified. There it is shown that (a)If
Φ is an unambiguous collection of tree formulas, and K ⊆ Φ∗ a regular language, then LEK is
recognized by

(H1, V1) ◦ (H2, V2),

where (H2, V2) is in APDL and (H1, V1) recognizes all the forest languages underlying Φ.
(More precisely, if φ ∈ Φ, then φ can be written as a boolean combination of formulas a ∧ ψ,
where ψ is a forest formula, and (H1, V1) recognizes all the Lψ.) If further K is first-order
definable, then (H2, V2) ∈ ACTL∗ . (b) Conversely, suppose L ⊆ HA is recognized by a wreath
product (H1, V1) ◦ (H2, V2), where (H2, V2) is in APDL. Then L is a boolean combination of
languages of the form LEK, where K ⊆ Φ∗ and each φ ∈ Φ is a boolean combination of a ∧ ψ,

12

where Lψ ⊆ HA is recognized by (H1, V1). In case (H2, V2) ∈ ACTL∗ , the languages K can
be chosen to be first-order definable.

The correspondence between operator depth and length of the wreath product now follows
from these properties:

• If L1, . . . , Lr are recognized by (H1, V1), . . . , (Hr, Vr), then all boolean combinations of
the Li are recognized by the direct product

r∏
i=1

(Hi, Vi).

• Let (Hij , Vij), 1 ≤ i ≤ r, j = 1, 2, be forest algebras. Then

r∏
j=1

(
(Hi1, Vi1) ◦ (Hi2, Vi2)

)
≺
(r∏
j=1

(Hi1, Vi1)
)
◦
(r∏
j=1

(Hi2, Vi2)
)
.

In fact, the left-hand side is a subalgebra of the right-hand side. This is a well-known fact
about the wreath product of transformation monoids that works without modification for
forest algebras. See, for example, Eilenberg [8].

• If (H1, V1), . . . , (Hr, Vr) are in APDL (respectively, ACTL∗) then
∏r
i=1(Hi, Vi) is in

APDL (respectively, ACTL∗).

�

4 Aperiodicity

If we forget about the additive structure of the horizontal monoids, a wreath product of forest
algebras is just a wreath product of transformation monoids. As is well known, the wreath
product preserves aperiodicity, and aperiodicity is preserved under homomorphic images. It
thus follows from Theorem 3 that for every L in FO[≺], VL is aperiodic. Of course this holds
for the subclasses CTL∗ and CTL as well. We do not need anything as fancy as the wreath
product to prove aperiodicity of the vertical monoids for these classes, but Theorem 3 provides
some additional information that allows us to prove a stronger necessary condition based on
aperiodicity.

Let (H,V) be a forest algebra. We can define the sum of two maps v, w from H to H by
pointwise addition: for all h ∈ H,

(v + w)h = vh+ wh.

We denote by V̂ the smallest set of maps that contains V and that is closed under both addi-
tion and composition. (H, V̂), which we also denote (̂H,V) is thus a forest algebra with an
additional additive structure on the vertical monoid: It is a seminearring, and we call it the
seminearring closure of (H,V). (See Bojańczyk [2]). Just as elements of V are represented by

13

Figure 4.1: A multicontext

contexts over A, elements of V̂ are represented by multicontexts. A multicontext p may have
several holes; p acts on a forest s by substituting s for each of the holes of p, giving a forest ps.
See Figure 4.1.

The following lemma collects some elementary facts about the seminearring closure.

Lemma 5 Let (H1, V1), (H2, V2) be forest algebras.
(a) If (H1, V1) ≺ (H2, V2), then (H1, V̂1) ≺ (H2, V̂2).
(b)

̂(H1, V1) ◦ (H2, V2) ≺ (H1, V̂1) ◦ (H2, V̂2).

Proof
(a) Pick a finite alphabet A and for which there is an onto homomorphism ψ : A∆ → (H1, V1).
There then exist a homomorphism Φ from a submonoid H ′ of H2 onto H1, and an assignment
a 7→ â for each a ∈ A, that satisfy the conditions in Theorem 1. By another application of
this theorem, this time with V̂1 as the underlying alphabet, it will suffice to show that for every
v ∈ V̂1 there exists v̂ ∈ V̂2 such that Φ(v̂h) = vΦ(h) for all h ∈ H ′.

To do this, we extend the map ψ to multicontexts over A: Given a multicontext p we asso-
ciate an element ψ(p) ∈ V̂1 by induction on the size of p:

ψ(p1 + p2) = ψ(p1) + ψ(p2), ψ(ap) = ψ(a)ψ(p).

We can similarly extend the map a 7→ â to multicontexts, defining p̂ ∈ V̂2 by

p̂1 + p2 = p̂1 + p̂2, âp = âp̂.

At each step in the construction of p, the following property is preserved: for any h ∈ H ′,

Φ(p̂h) = ψ(p)Φ(h).

Given v ∈ V̂1,we can represent it by a multicontext pv such that ψ(pv) = v.We then set v̂ = p̂v,
which gives the desired division.

14

(b) Let (H,V) = (H1, V1) ◦ (H2, V2). The vertical monoid W of (H, V̂1) ◦ (H, V̂2) is closed
under composition, by definition of the wreath product, and it contains V. So it suffices to prove
that W is closed under addition as well, since this will show that (H1, V̂1) ◦ (H2, V̂2) is a sem-
inearring, and thus contains (̂H,V). (This is a stronger result than the statement in the Lemma,
since we obtain inclusion rather than just division.)

Let (v, f), (w, g) ∈ W, so that v, w ∈ V̂1 and f, g : H1 → V̂2. Then given h1 ∈ H1, h2 ∈
H2, we have

[(v, f) + (w, g)](h1, h2) = (v, f)(h1, h2) + (w, g)(h1, h2)
= (vh1, f(h1)h2) + (wh1, g(h1)h2)
= (vh1 + wh1, f(h1)h2 + g(h1)h2)
= ((v + w)h1, (f(h1) + g(h1))h2)
= (v + w,F)(h1, h2),

where F : H1 → V̂2 is defined by F (h) = f(h) + g(h) for all h ∈ H1. Thus W is closed under
addition, as claimed. �

We define another forest algebra (̃H,V) = (H, Ṽ), intermediate between (H,V) and
(H, V̂), which we call the uniform closure of (H,V). Ṽ is the smallest set containing V and
closed under the composition and the operations

v 7→ v + · · ·+ v.

Note that since H is finite, there are only finitely many distinct sums of this form, so Ṽ is
finite and is effectively computable from V. Given a homomorphism ψ : A∆ → (H,V) we can
represent elements of V̂ by uniform multicontexts over A, which are obtained by applying these
same operations to VA.

Figure 4.2 shows a pair of uniform multicontexts. Observe that the multicontext on the
right is obtained from the one on the left by composing with the context a(b(ab + a) + 1). (In
particular, this relaxes the requirement in [7] that in a uniform multicontext all the subtrees at
each fixed level are identical).

The analogue of Lemma 5 for the uniform closure holds as well. The proof is identical: We
simply substitute uniform multicontexts for arbitrary ones.

Lemma 6 Let (H1, V1), (H2, V2) be forest algebras.
(a) If (H1, V1) ≺ (H2, V2), then (H1, Ṽ1) ≺ (H2, Ṽ2).
(b)

˜(H1, V1) ◦ (H2, V2) ≺ (H1, Ṽ1) ◦ (H2, Ṽ2).

The notions of seminearring closure and uniform closure lead to succinct statements and
simple proofs of effective necessary conditions for definability in CTL and FO[≺]. These were
first proved in [7] in terms of absence of ‘vertical confusion’.

Theorem 7 Let L ⊆ HA.
(a) If L is definable in CTL, then V̂L is aperiodic.
(b) If L is definable in FO[≺], then ṼL is aperiodic.

15

Figure 4.2: A pair of uniform multicontexts

Proof
(a) Suppose L is definable in CTL. Then by Theorem 3 and Lemma 5,

̂(HL, VL) ≺ ̂U2 ◦ · · · ◦ U2

≺ Û2 ◦ · · · ◦ Û2

But observe that the vertical monoid of Û2 is already closed under addition, so that Û2 = U2.
Thus (HL, VL) divides a wreath product of copies of U2. Since U2 is aperiodic, and aperiodicity
is preserved under wreath product and division, VL is aperiodic.

(b) The idea of the proof is the same. Theorem 3 and Lemma 6 imply

˜(HL, VL) ≺ (H1, Ṽ1) ◦ · · · ◦ (Hk, Ṽk),

where each (Hi, Vi) is in AFO[≺]. It remains to show that for each such algebra, Ṽi is aperi-
odic. We do this for each of the two kinds of algebras in AFO[≺]: Suppose first that (Hi, Vi)
is horizontally idempotent and commutative, distributive and aperiodic. Idempotence implies
v+ · · ·+ v = v. Thus Vi is already closed under the operation v 7→ v+ · · ·+ v, and so Ṽi = Vi
is aperiodic. For the case where (Hi, Vi) is flat and aperiodic, we claim that every v ∈ Ṽi has
the form

v : g 7→ kg + h,

where k ∈ Z+ and h ∈ Hi. Certainly, each v ∈ Vi has this form, since by flatness such a v maps
g to g + h for some h ∈ Hi. The set of such maps is also clearly closed under composition and
the operations v 7→ v + · · ·+ v, which establishes the claim. Thus if r > 0, vr maps g ∈ H to

krg + (1 + k + · · ·+ kr−1) · h.

Since H is aperiodic, there exists M > 0 such that M ′f = Mf for all M ′ > M, f ∈ H. Thus
vrg = vr+1g for sufficiently large r. Since every v ∈ Ṽi satifies vr = vr+1, Ṽi is aperiodic. �

16

We recall the applications of this theorem from [7]. If L ⊆ A∗ is a regular word language,
then we denote by E′L the set of forests that contain a maximal path whose sequence of labels
is in L. (Note the difference between E′L and EL–the former concerns only paths that extend
all the way to a leaf.)

Proposition 8 E′(ab)+ is not definable in CTL.

Proof
Let K = E′(ab)+. It is easy to verify that HK is idempotent and commutative, and the syntactic
forest algebra is given by Figure 4.3, together with the rules α+ γ = α, β + γ = β.

Figure 4.3: The syntactic forest algebra of E′(ab)+.

Let v ∈ V̂K be the element represented by the multicontext a� + b�. Then

vα = aα+ bα = γ + β = β, vβ = aβ + bβ = γ + α = α.

Thus v interchanges α and β, so V̂K contains a nontrivial group. By Theorem 7, K is not
definable in CTL. �

An example of an application of the second part of Theorem 7, also discussed in [7], is
the set of L all binary trees in which some path has even length. Since these are unlabeled
trees, we are working over a unary alpahbet {a}. A simple computation shows that the uniform
multicontext a(� + �) interchanges two elements of HL. Thus ṼL contains a nontrivial group,
so L is not definable in FO[≺]. This example is interesting in light of the fact, discovered by
Potthoff [14], that L is definable in first-order logic for ordered forests, in which there is an
‘older sibling’ as well as an ‘ancestor’ predicate.

5 Identities and Generalized Distributivity

Let Ξ = {x1, x2, . . .} be a countable alphabet. An identity is a formal equation s = t, where
s, t ∈ HΞ. A forest algebra (H,V) satisfies the identity s = t, written

(H,V) |= (s = t)

if and only if for every homomorphism ψ : Ξ∆ → (H,V), ψ(s) = ψ(t).

17

Some of the conditions on forest algebras that we discussed earlier can be expressed in
terms of identities. For example, the horizontally idempotent and commutative forest algebras
are those that satisfy the identities

x1 + x2 = x2 + x1, x1 + x1 = x1.

Distributive forest algebras are those that satisfy the identity

x1(x2 + x3) = x1x2 + x1x3.

(As we proceed, we will informally drop the requirement that all variables in identities have the
form xi, and write identities as x(y+z) = xy+xz, x+y = y+x, etc.) Forest algebras (H,V)
in which V is aperiodic are those that satisfy xny = xn+1y for some n > 0.

A pseudovariety of finite forest algebras is a family of algebras closed under finite direct
products and division. The general theory of pseudovarieties of finite monoids and their asso-
ciated identities, as presented, for example, in [8], extends to forest algebras. In particular,
if

(si = ti)i≥1

is a sequence of identities, then the family of forest algebras that satisfy all but finitely many of
the identities of the sequence forms a pseudovariety. The converse, which is far less obvious, is
also true: All pseudovarieties arise in this way.

We now exhibit a particular sequence of identities that can be thought of as a kind of gener-
alized distributive law:

s1 = x1x2(y1 + y2), t1 = x1(x2y1 + x2y2).

For n ≥ 1,

sn+1 = x2n+1x2n+2(sn + tn), tn+1 = x2n+1(x2n+2sn + x2n+2tn).

Let k > 0, and let PDLk denote the forest algebras that divide a wreath product of k
members of APDL. As we showed in Theorem 4, each PDLk is a pseudovariety, and a forest
language is definable in PDLk if and only if its syntactic forest algebra is in PDLk.

Theorem 9 Let k > 0. If (H,V) ∈ PDLk and x ∈ Ξ, then (H,V) |= (sk = tk) for all k > 0.

Proof
It suffices to show that if (H1, V1) |= (s = t) and (H2, V2) is distributive and horizontally
idempotent and commutative, then

(H1, V1) ◦ (H2, V2) |=
(
x(s+ t) = xs+ xt

)
.

When we substitute elements of the wreath product for the variables in s and t respectively,
we obtain (h1, h2), (k1, k2) ∈ H1 × H2. Since we suppose (H1, V1) |= (s = t), we have
h1 = k1. Let us denote their common value by h. If we now substitute the vertical element

18

(v, f) ∈ V1×V H1
2 for s, we obtain (using distributivity in the right coordinate, and idempotence

and commutativity in the left)

x(s+ t) = (v, f)((h, h2) + (h, k2))
= (v, f)(h, h2 + k2)
= (vh, f(h)(h2 + k2))
= (vh+ vh, f(h)h2 + f(h)k2)
= (vh, f(h)h2) + (vh, f(h)k2)
= (v, f)(h, h2) + (v, f)(h, k2)
= xs+ xt.

�

We will give two applications of this identity-based approach to PDL. The first is a proof
that the hierarchy based on operator depth in PDL is infinite. This differs from similar-looking
hierarchy results concerning CTL∗ in Shamir, et. al., [16] and Bojańczyk [4] in the exact way
the hierarchy is formed. However, we do not really view our hierarchy result here as a new fact
so much as an illustration of a new technique for proving such results.

To this end, we define two sequences of temporal formulas {αn}, {βn}, for n ≥ 1, over the
alphabet {a, b}. All the formulas use the temporal operator EF.

α1 : EFa, β1 : EFb,

αn+1 : EF(a ∧ αn ∧ βn),

βn+1 : EF(a ∧ αn) ∧ EF(a ∧ βn) ∧ ¬αn+1.

To understand these formulas, look at the case n = 2: α2 says there is a node labeled a with
strict descendants labeled a and b. β2 says that there is no such node, but there is a node labeled
a with a strict descendant labeled a and another node labeled a with a strict descendant labeled
b. For example, the forest ba(a+ b) satisfies α2, while b(aa+ ab) satisfies β2.

Theorem 10 Let k > 0. The syntactic forest algebras of Lαk
and Lβk

are in PDLk\PDLk−1.

Proof
Membership in PDLk follows immediately from the nesting depth of the formulas αk and βk,
and Theorem 4. To show non-membership in PDLk+1, we consider the following sequences
{s′n}, {t′n} of forests over {a, b}.:

s′1 = a, t′1 = b,

s′n+1 = a(s′n + t′n), t′n+1 = as′n + at′n.

This is a specialization of the forests si, ti introduced earlier for Theorem 9—we are just con-
sidering the special case where xi = 1 for odd i and xi = a for even i. Theorem 9 implies that
for all n > 1, sn = tn is an identity for PDLn−1. We also have, by a straighforward induction,
that for all n ≥ 1,

s′n |= αn ∧ ¬βn, t′n |= βn ∧ ¬αn.

19

These observations give us the desired result, for if, say, the syntactic forest algebra Lαn were
in PDLn−1, then sn and tn would be mapped by the syntactic morphism to the same element,
and thus we would have sn, tn either both in Lαn , or both outside it, a contradiction. The same
applies, of course, to βn.

�

An immediate corollary is

Corollary 11 Let n > 0. Neither αn nor βn is equivalent to a PDL formula with nesting depth
strictly less than n.

Thus, while the EF operator is extremely weak in one sense, it can climb to all levels of the
depth hierarchy within PDL.

As a second application of Theorem 9, we give a simple new proof of what has become
a kind of standard counterexample. We consider forests over the alphabet {∧,∨, 0, 1}. Each
component of such a forest is a tree, and as long as the tree only has 0 and 1 as leaf labels, and
only has ∧ and ∨ as labels of interior nodes, it represents a well-formed boolean expression. We
define L to be the set of all such forests in which every component is an expression tree that
evaluates to True. For example ∨(0 + 1) ∈ L, but ∧(0 + 1) /∈ L.

Theorem 12 L is not definable in FO[≺].

Proof
Observe that HL is idempotent and commutative. (This is the reason for defining L as the set
of forests of valid expression trees, rather than just individual trees.) In [7] it is proved that
any language definable in FO[≺] that is horizontally idempotent and commutative is definable
in PDL, and in fact in CTL∗. (See also Moler and Rabinovich [11].) We will consequently
suppose that (HL, VL) ∈ PDLn for some n and derive a contradiction. We define another
specialization of our identities:

s′0 = 0, t′0 = 1,

and
s′n+1 = ∨ ∧ (s′n + t′n), t′n+1 = ∨(∧s′n + ∧t′n).

If we interpret these forests as left- and right-hand sides of identities, then Theorem 9 implies
that sn = tn is an identity for PDLn. But note that for each n, sn is a false boolean expression,
and tn a true one, so sn and tn have different values under the syntactic morphism of L. Thus L
cannot be in PDLn for any n. �

6 The Overlap of CTL and LTL.

Theorems 7 and 9 provide necessary conditions for definability in various logics. It would be
very nice if any of these conditions turned out to be sufficient. We will discuss this question in
more detail in the conclusion. But we can say right away that the aperiodicity conditions for
CTL and FO[≺] given in Theorem 7 are not sufficient: Theorem 12, concerning the language

20

L of true boolean expression forests, provides a counterexample in both cases, since one can
check that V̂L is aperiodic.

Still, one might hope to rescue a weaker sufficiency result from the aperiodicity condition
for CTL. Our counterexample was a language of the form E’L, where L is a word language. Is
it possible that for all such languages aperiodicity of V̂E′L implies that E′L is definable in CTL?

If a language of the form E’L is in CTL, then L must be aperiodic, and consequently de-
finable in LTL. We are thus addressing what, in other guises, is referred to as the ‘common
fragment’ of LTL and CTL (Maidl [10], Bojańczyk [5]). For which regular languages L is E’L
definable in CTL?

6.1 Another language not in CTL.

LetA = {a, b}. For the remainder of this subsection, let L ⊆ HA consist of all nonempty forests
in which every maximal path has two consecutive occurrences of b.

Theorem 13 L is not definable in CTL.

Proof

We compute the syntactic forest algebra (HL, VL) of L. If s ∈ L and p ∈ VA, then ps ∈ L
if and only if every maximal path in p, except possibly the one leading to the hole, contains
two consecutive occurrences of b. Thus all elements of L are equivalent under the syntactic
congruence, so L forms a single congruence class. We will provisionally denote this class by 0′:
we’ll explain this choice of notation later.

Suppose s /∈ L, but that every root node of s is labeled b. Let p ∈ VA. Then ps ∈ L if and
only if the following conditions hold:

Every maximal path in p, except the path of ancestors of the hole, contains two consecutive
b’s.

Either the parent of the hole is labeled b, or the path of ancestors of the hole contains two
consecutive b’s.

Thus for all such s, ps ∈ L depends only on p, so all such forests are congruent. We denote this
congruence class by α.

Suppose s 6= 0, but is not of either of the kinds described above. Then ps ∈ L if and only
if every maximal path in p, including the path to the hole, contains two consecutive b’s. So all
of these are congruent, and we denote their congruence class by∞. This notation is justified by
the fact that if s belongs to this class, then so does s+ s′ for any forest s′.

Finally, the empty forest is not equivalent to any of these: Let s ∈ L. Then 0+s ∈ L, but this
is not true if 0 is replaced by a member of the classes α or∞.And 0 of course does not belong to
the class L. We denote this class 0. Easily, {0, 0′, α,∞} is idempotent and commutative under
addition, and α+ 0′ = α.

Figure 6.1 is a state transition diagram of this syntactic forest algebra, showing the transitions
induced by the letters.

21

Figure 6.1: The syntactic forest algebra of L. Addition is idempotent and commutative, with
α+ 0′ = α.

Observe that if we remove the state 0, we obtain a forest algebra in which 0′ is the additive
identity. We will work with this smaller algebra, which we call K, and hereinafter denote its
identity as 0 rather than 0′. See Figure 6.2

Figure 6.2: The subalgebra K

By Theorem 3, L is definable in CTL if and only if (HL, VL) divides an iterated wreath
product of copies of the forest algebra U2. If this were true, then the subalgebra K would also
divide such a wreath product. We will show that, in fact, this cannot occur.

The proof is by induction of the number of factors in the wreath product. ObviouslyK 6≺ U2,
because the horizontal monoid of right-hand side has two elements, and the left-hand side three.
For the inductive step, we will show that if X is any forest algebra such that K ≺ U2 ◦X, then
K ≺ X.

If K ≺ U2 ◦X, then there exist a homomorphism Φ from a submonoid H ′ of the horizontal
monoid of U2 ◦X, and vertical elements â, b̂ of the wreath product satisfying the conditions in
Theorem 1. Let us denote the horizontal monoid of X by H(X), and its vertical monoid by
V (X). We write

â = (c, f), b̂ = (d, g),

where f, g : {0,∞} → H(X), and c, d ∈ {1, c0, c∞}.We choose elements (aq, xq) ∈ {0,∞}×
H(X) for q ∈ {0, α,∞} such that Φ(aq, xq) = q for each q.

We first consider the case where a0 = aα = a∞ =∞. Observe that the set

H ′′ = {x ∈ H(X) : (∞, x) ∈ domΦ}

is a subsemigroup of H(X), and the map Ψ : H ′′ → {0, α,∞} defined by

Ψ(x) = Φ(∞, x)

22

is a homomorphism. By our assumption that aq =∞ for all q, we also have that Ψ is onto. We
define

ā = f(∞) + x0, b̄ = g(∞) + x0 ∈ V (X).

If x ∈ H ′′, then we have

(∞, ā · x) = (c · ∞+∞, f(∞) · x+ x0)
= (c, f) · (∞, x) + (∞, x0)
= â · (∞, x) + (∞, x0)
∈ domΦ,

since â · (domΦ) ⊆ domΦ, and domΦ is closed under addition. Thus ā · (domΨ) ⊆ domΨ,
and likewise b̄ · (domΨ) ⊆ domΨ. We also have, for any x ∈ H ′′,

Ψ(ā · x) = Φ(∞, ā · x)
= Φ(c · ∞+∞, f(∞) · x+ x0)
= Φ(â(∞, x) + (∞, x0))
= Φ(â · (∞, x)) + Φ(∞, x0)
= aΦ(∞, x) + 0
= aΦ(∞, x)
= aΨ(x).

Similarly Ψ(b̄ · x) = bΨ(x). Thus K ≺ X.
We thus suppose that the aq cannot all be chosen equal to∞. If a0 =∞, then we find

Φ(∞, xα + x0) = Φ(aα, xα) + Φ(∞, x0) = α+ 0 = α,

and likewise Φ(∞, x∞) = ∞. Thus all three elements have preimages in {∞} × H(X), and
we are back in the previous case. So we can suppose that no element of the form (∞, x) can be
mapped by Φ to 0. If c = c∞, we find

Φ(∞, f(0) · x0) = Φ(â(0, x0)) = a · 0 = 0,

which means that we could have chosen a0 =∞. As we have shown this is impossible, we must
have c ∈ {1, c0}. The same argument with b̂ in place of â shows d ∈ {1, c0}.

If aα =∞, then

Φ(d · ∞, g(∞) · xα) = Φ(b̂(∞, xα)) = b · α = 0,

so d · ∞ cannot be∞, and thus d = c0. This gives

Φ(0, g(a∞) · x∞) = Φ(c0 · a∞, g(a∞) · x∞)
= Φ(b̂(a∞, x∞))
= b · ∞
= α,

23

so we could have chosen our preimage of α with aα = 0. This gives

Φ(0, f(0) · xα) = Φ(c · 0, f(0) · xα)
= Φ(â(0, xα))
= a · α
= ∞

so we also could have chosen our preimage of ∞ with a∞ = 0. So we may now suppose
(0, x0), (0, xα), (0, x∞) are mapped by Φ to 0, α,∞ respectively. We now set ā = f(0), b̄ =
g(0), and

H ′′ = {x ∈ H(X) : (0, x) ∈ domΦ}.

As before, we have H ′′ closed under addition, and the map Ψ : x 7→ Φ(0, x) a homomorphism
from H ′′ onto {0, α,∞}. If (0, x) ∈ domΦ, then we have

(0, ā · x) = (c · 0, f(0) · x) = â(0, x) ∈ domΦ,

so that ā(domΨ) ⊆ domΨ, and similarly for b̄. Finally, we have for x ∈ H ′′,

Ψ(ā · x) = Φ(0, ā · x)
= Φ(c · 0, f(0) · x)
= Φ(â(0, x))
= aΦ(0, x)
= aΨ(x),

and similarly Ψ(b̄ · x) = bΨ(x). So K ≺ X in this case as well. �

The complement of L is the language E′T, where T ⊆ {a, b}∗ consists of all forests in
which some maximal path does not contain two consecutive b’s. It follows from Theorem 13
that this language, as well, is not definable in CTL. This provides a negative answer to the
question raised earlier whether every forest language of the form E′K for some K ⊆ {a, b}∗
whose associated seminearring is aperiodic, is definable in CTL. To complete the analysis, we
need to make sure that ̂(HL, VL) is indeed aperiodic.

Proposition 14 ̂(HL, VL) is aperiodic.

Proof
We will show that no multicontext p can induce a nontrivial cycle in the horizontal elements
of HL. Obviously, 0 cannot be an element of any such cycle. We have a number of cases to
consider, depending on the form of p.

If p has a hole at every leaf node, then p · 0′ = 0′. This means that 0′ cannot be a member
of any cycle induced by p. We need to rule out the possibility that p interchanges α and∞. If p
has a root node labeled a, then we can not have p · h = α for any h ∈ HL. If all root nodes are
labeled b, then we can never have p · h =∞.

24

So the only possibility for a cycle is one where p has some leaf nodes that are not holes.
If p has a root node labeled a, then as above, we can not have p · h = α. Thus p would have
to interchange 0′ and ∞. Similarly, if p has all root nodes labeled b, then p would have to
interchange 0′ and α. We can show that neither of these is possible as a consequence of the
following fact, which can be proved by an easy induction on the number of nodes of p: For
every multicontext p, if p · α = 0′ or p · ∞ = 0′, then p · 0′ = 0′. �

6.2 Monoids associated with the common fragment of LTL and CTL

The ideal result in this vein would be an algorithm that takes as input an automaton recognizing
a word language L ⊂ A∗ and outputs whether or not E′L is in CTL. This problem is open, and,
as we discuss later in the conclusion, it may prove to be very difficult.

In general, the structure of the syntactic monoid of L is not sufficient to answer this question.
This is shown by Theorem 13: If L is given by the regular expression
(a + b)∗bb(a + b)∗—that is, if L consists of strings over {a, b} that contain two consecutive
occurrences of b, then E′L is in CTL. But this is not true for the complement of L, which has
the same syntactic monoid.

Here we give necessary and sufficient conditions on a finite monoidM so that for all L ⊆ A∗
recognized byM, E′L ∈ CTL.We first recall some basic facts about the ideal structure of finite
semigroups: Two elements s, t of a finite monoid M are J -equivalent if MsM = MtM.
Equivalence classes of this relation are called J -classes. If a J -class contains an idempotent
the class is said to be regular. Generally speaking, the product of two elements in a J -class need
not belong to the J -class, and if st /∈ J, we must have MstM ∩ J = ∅—in other words, we
can never get back to J once the product of two elements takes us outside of J. The Rees Matrix
Theorem, restricted to finite aperiodic monoids, states that for each regular J -class J there is a
pair of finite sets X,Y and a map P : Y × X → {0, 1}, such that J is isomorphic to X × Y
with multiplication given by

(x, y) · (x′, y′) = (x, y′), if P (y, x′) = 1,

with the product undefined if P (y, x′) = 0. This latter case is the situation where the product of
the elements of J corresponding to (x, y) and (x′, y′) is not in J.

The function P has an additional property: For each y ∈ Y there is at least one x ∈ X
such that P (y, x) = 1, and similarly for each x ∈ X there is at least one y ∈ Y such that
P (y, x) = 1. Observe that P (y, x) = 1 if and only if (x, y) is an idempotent. We can thus
depict a regular J -class in a finite aperiodic monoid by what has come to be called an egg-box’
diagram: This is a rectangular grid with rows indexed by X, columns by Y, and with an asterisk
in each cell corresponding to an idempotent.

The syntactic monoids of (ab)+ and (a + b)∗bb(a + b)∗ have very similar structures. Both
contain six elements: 1, 0, and a regular J -class with a 2 × 2 Rees matrix representation. In
the case of (ab)+ this J -class contains two idempotents (the syntactic congruence classes of ab
and ba) and two non-idempotents (the syntactic congruence classes of a and b). In the case of
(a + b)∗bb(a + b)∗ the class of a is also idempotent. Egg-box diagrams of these J -classes are
shown in Figure 6.3.

25

Figure 6.3: The nontrivial J -classes in M((ab)+) (left) and M((a+ b)∗bb(a+ b)∗) (right)

The class DA consists of finite aperiodic monoids M in which every regular J -class is
closed under multiplication (equivalently, every element of every regular J -class is idempo-
tent). DA forms a pseudovariety of finite monoids. This variety, which arises in an surprisingly
large number of contexts, was first identified by Schützenberger [15], who proved the following
property of the languages recognized by monoids in DA.

Theorem 15 Let L ⊆ A∗. If M(L) ∈ DA then L is a finite union of languages of the form

A∗0a1A
∗
1 · · · anA∗n,

where for i = 1, . . . , n, ai ∈ A, and for i = 0, . . . , n, Ai ⊆ A.

(As we have stated this theorem, the converse is false, but in fact Schützenberger gave a pre-
cise characterization of languages recognized by DA, which entails an additional unambiguity
condition on the concatenation product and union. We will not require this.)

Here is our principal result concerning languages of the form E′L definable in CTL.

Theorem 16 Let M be a finite monoid, and A a finite alphabet with at least two letters. The
following are equivalent:

• For every L ⊆ A∗ recognized by M, E′L is in CTL.

• M ∈ DA.

Proof
First suppose that M ∈ DA, and let L be recognized by M. Then M(L) ≺ M. Since DA is
closed under division, M(L) ∈ DA, and thus by Theorem 15, L is a union of products of the
form A∗0a1A

∗
1 · · · anA∗n, where for i = 1, . . . , n, ai ∈ A, and for i = 0, . . . , n, Ai ⊆ A. Easily

for any L1, L2 ⊆ A∗, E′(L1 ∪ L2) = E′L1 ∪ E′L2. Thus it suffices to show that E′L ∈ CTL
when L has the form A∗0a1A

∗
1 · · · anA∗n. We can prove this by induction on the length n of the

product. First, if A′ ⊆ A, then E′(A′)∗ is defined by the formula

emp ∨ EφU(φ ∧ emp),

26

where φ is
∨
a∈A′ a. Now, assuming we have a CTL formula ψ defining the set of forests with a

maximal path inA∗kak+1 · · · anA∗n,we obtain the following formula forA∗k−1akA
∗
kak+1 · · · anA∗n:

E(
∨

a∈Ak−1

a)U(ak ∧ ψ).

For the converse, assume that M /∈ DA. We will show that there are word languages L
recognized by M such that E′L is not in CTL.

If M contains a group, then it recognizes a word language L such that M(L) contains a
group. There is thus a word v and a sequence of words (u0, . . . , uk−1) such that v cycles these
words in M(L): That is, vui is equivalent to u(i+1) mod k under the syntactic congruence of L,
but the ui are not all congruent to one another. In particular, u0 and u1 are not congruent, so there
exist words x, y such that xu0y ∈ L and xu1y /∈ L, or vice-versa. Now consider the sequence
of words (u0y, u1y, . . . , uk−1y) as forests, and compare them modulo the syntactic congruence
of E′L.We then have that u0y and u1y are not equivalent. However, we do have vuiy equivalent
to vu(i+1) mod ky. Thus v induces a nontrivial cycle in the syntactic forest algebra of E′L. This
algebra is thus not aperiodic, so it cannot be definable in CTL.

We may therefore assume that M is aperiodic. Thus M has regular J -class J that contains
a non-idempotent element. Consider a Rees matrix representation of J, and let (x, y) be a non-
idempotent element. There must be x′ 6= x and y′ 6= y such that (x, y′) and (x′, y) are both
idempotent. Let a, b ∈ A be distinct letters, and define a homomorphism φ : A∗ →M that maps
b to (x, y), a to (x′, y′), and all other letters of A to (x, y)2. Consider the language L = φ−1(J)
recognized by M.

If w ∈ L, then w ∈ {a, b}∗, because otherwise w ∈ M(x, y)2M, which is outside of J.
If (x′, y′) is not idempotent, then w cannot contain any factor of the form aa, or bb, because
both P (y, x) and P (y′, x′) are 0. Thus L consists precisely of the words in which a and b
strictly alternate, and so E′L is not definable in CTL, a consequence of Proposition 8. (That
Proposition concerns the language E′(ab)+, but the same proof applies to E′L.) If (x′, y′) is
idempotent, P (y′, x′) = 1, so w ∈ L if and only if w contains no factor of the form bb. But now
Theorem 13 implies that E′L is not definable in CTL. �

7 Conclusion

Much of this paper has been devoted to showing how standard notions from the algebraic theory
of regular word languages—sequences of identities, preservation of aperiodicity under wreath
products and quotients, ideal structure of semigroups—can be brought to bear on questions of
logical definability of properties of trees, both producing new insights and simplifying existing
arguments. However, there is one very significant gap: We have only been able to demonstrate
algebraic necessary conditions for definability in various logics, by deriving properties of the
wreath product. What is missing is a mechanism for obtaining wreath product decompositions
of forest algebras, which will be required in order to use this theory to obtain sufficient con-
ditions. Such a decomposition is demonstrated in [7], but only in the rather simple case of a
characterization of the logic EF.

27

Let us examine our results in this light.
Seminearring closure and aperiodicity. As we saw, aperiodicity of the seminearring closure of
a forest algebra is a necessary, but not a sufficient condiition for membership in CTL. Still, this
notion might be relevant for the problem of obtaining an effective characterization of CTL. Let
us begin with a seminearring (H,V) in which H is idempotent and commutative, and V is ape-
riodic. By the Krohn-Rhodes Theorem, (H,V) considered as a transformation monoid divides
an iterated wreath product of copies of U2, again considered as transformation monoids—that is,
ignoring the additive structure. The problem of characterizing membership inCTL is essentially
that of finding when such a transformation monoid division preserves the additive structure, and
is thus a forest algebra division.

We should expect that, considered as a transformation monoid, (H,V) might admit a shorter
decomposition as a wreath product of copies of U2 than it has as a forest algebra. It would
be interesting to see examples of languages in CTL whose syntactic forest algebras have this
property. (If we knew for some reason that such a length discrepancy never arises, then we would
have a proof of decidability of membership in CTL, albeit with a very inefficient algorithm.)
Generalized distributivity. What is the exact relation between the generalized distributive ideni-
tities and definability in PDL? The dream theorem here would state that if a finite forest algebra
is horizontally idempotent and commutative and satisfies sn = tn for some n, then it divides a
wreath product of distributive, horizontally idempotent and commutative forest algebras.

This seems like too much to hope for, and it is probably more prudent to search for a coun-
terexample. But the identities give us a new way to think about the problem. If generalized
distributivity is not sufficient, then what do we need to add to these identities to permit the
decomposition?
The overlap ofCTL andLTL The work of Bojaǹczyk [5], building on earlier results of Maidl [10],
provides an effective characterization of the languages L ⊆ A∗ such that E′L is definable in
CTL using only positive applications of the operator EφUψ: that is, this operator is never used
within the scope of a negation. L is definable in this way if and only if it has depth 3/2 in the
concatenation hierarchy; that is, L is a union of languages of the form

A∗0a1A
∗
1 · · · anA∗n,

where for i = 1, . . . , n, ai ∈ A, and for i = 0, . . . , n, Ai ⊆ A. One can decide effectively
whether a given regular language L is of depth 3/2.

We have already seen that every language in DA has this form, and we have argued above
that for every such language L, E′L is definable in CTL. However, there are languages of depth
3/2 that are outside DA. Bojańczyk provides an example of a language L that does not have
depth 3/2, but for which E′L is in CTL.

The question of definability of E′L in CTL is thus very complex. We conjecture that every
L for which E′L belongs to CTL has depth no more than 2 in the concatenation hierarchy; these
are boolean combinations of languages of depth 3/2. (Bojaǹczyk’s example has depth 2.) Even
if this turns out to be true, it is far from settling the general question: We have already seen that
there are languages L of depth 2 for which E′L is not in CTL. Moreover, in contrast to depth
3/2, the problem of effectively determining if a given regular language has depth 2 has been open
for many years.

28

References

[1] Michael Benedikt and Luc Segoufin. Regular tree languages definable in fo and in fomod.
ACM Trans. Comput. Logic, 11(1):4:1–4:32, November 2009.

[2] M. Bojanczyk. Algebra for trees. In J.-E. Pin, editor, AutoMathA Handbook. 2012.
preprint.

[3] M. Bojanczyk and I. Walukiewicz. Forest algebras. In Erich Graedel Joerg Flum and
Thomas Wilke, editors, Logic and Automata: History and Perspectives. Amsterdam Uni-
versity Press, 2008.

[4] Mikolaj Bojańczyk. Decidable Properties of Tree Languages. PhD thesis, University of
Warsaw, 2004.

[5] Mikolaj Bojanczyk. The common fragment of actl and ltl. In Roberto M. Amadio, editor,
FoSSaCS, volume 4962 of Lecture Notes in Computer Science, pages 172–185. Springer,
2008.

[6] Mikolaj Bojanczyk, Luc Segoufin, and Howard Straubing. Piecewise testable tree lan-
guages. Logical Methods in Computer Science, page to appear, 2012.

[7] Mikolaj Bojanczyk, Howard Straubing, and Igor Walukiewicz. Wreath products of forest
algebras, with applications to tree logics. Logical Methods in Computer Science, page to
appear, 2012.

[8] S. Eilenberg. Automata, Languages, and Machines, Volume B. Pure and Applied Mathe-
matics. New York: Academic Press, 1976.

[9] L. Libkin. Elements Of Finite Model Theory. Texts in Theoretical Computer Science.
Springer, 2004.

[10] Monika Maidl. The common fragment of ctl and ltl. In FOCS, pages 643–652. IEEE
Computer Society, 2000.

[11] Faron Moller and Alexander Moshe Rabinovich. On the expressive power of ctl. In LICS,
pages 360–368. IEEE Computer Society, 1999.

[12] J.E. Pin. Varieties of formal languages. North Oxford Academic, 1986.

[13] Jean-Eric Pin. Syntactic semigroups. Number v. 1 in Handbook of Formal Languages.
Springer, 1997.

[14] A. Potthoff. First-order logic on finite trees. Lecture Notes in Computer Science, 915:125–
139, 1995.

[15] M. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Forum, 13:47–
75, 1976. 10.1007/BF02194921.

29

[16] Shoham Shamir, Orna Kupferman, and Eli Shamir. Branching-depth hierarchies. Electr.
Notes Theor. Comput. Sci., 39(1):65–78, 2000.

30

