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Abstract

In an earlier paper, the second author generalized Eilenberg’s vari-
ety theory by establishing a basic correspondence between certain classes
of monoid morphisms and families of regular languages. We extend this
theory in several directions. First, we prove a version of Reiterman’s the-
orem concerning the definition of varieties by identities, and illustrate this
result by describing the identities associated with languages of the form
(a1a2 · · · ak)+, where a1, . . . , ak are distinct letters. Next, we generalize
the notions of Mal’cev product, positive varieties, and polynomial closure.
Our results not only extend those already known, but permit a unified ap-
proach of different cases that previously required separate treatment.

Résumé

Dans un article antérieur, le second auteur avait proposé une extension
de la théorie des variétés d’Eilenberg en établissant une correspondance
entre certaines classes de morphismes de monöıdes et certaines classes de
langages rationnels. Nous complétons cette théorie dans plusieurs direc-
tions. Nous commençons par étendre le théorème de Reiterman relatif
à la définition des variétés par identités. Nous illustrons ce résultat en
décrivant les identités attachées aux langages de la forme (a1a2 · · · ak)+,
où a1, . . . , ak sont des lettres distinctes. Ensuite, nous généralisons les
notions de produit de Mal’cev, de variétés positives et de fermeture poly-
nomiale. Nos résultats permettent non seulement d’étendre les résultats
déjà connus, mais proposent également une approche unifiée pour des cas
qui nécessitaient jusqu’ici un traitement séparé.

1 Introduction

Work of Eilenberg and Schützenberger [3, 4] in the 1970’s underscored the im-
portance of varieties of finite semigroups and monoids (also called pseudovari-
eties) in the study of the behavior of finite automata and the languages they
accept. Since that time, a rich research literature on varieties has arisen, treat-
ing both the applications to automata theory and the fundamental underlying
algebra. (We refer the reader to [8, 2] for an account of recent progress and a
comprehensive bibliography.)
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It was recognized very early on, particularly in the work of Brzozowski and
Simon [15, 16] on locally testable languages, that in many instances one needs
to study the structure of the syntactic semigroup of a language, rather than the
syntactic monoid, and for this reason Eilenberg developed two parallel theories
of varieties, one for finite semigroups, and the other for finite monoids.

In studying the circuit complexity of regular languages, Barrington, et al. [1]
and Straubing [17] came across a curious phenomenon: Membership of a regular
language in the circuit complexity class AC0, as well as some related families,
is not determined by the syntactic monoid or semigroup of the language, and
therefore these language families do not correspond to varieties in the usual
sense. However the same families do admit succinct algebraic characterizations
in terms of the syntactic morphism, as well as characterizations in generalized
first-order logic that closely resemble the descriptions found for varieties in the
usual sense.

Straubing [18] generalized the definition of variety so as to include these
examples. The elements of these new varieties are not semigroups or monoids,
but morphisms from free finitely-generated monoids onto finite monoids, also
called stamps. Associated with each such variety V is a category C of admissible
morphisms between free finitely-generated monoids with the property that if
ϕ : A∗ → M is in V and f : B∗ → A∗ is in C, then ϕ ◦ f : B∗ → M is in V.
When C is the family of all morphisms between finitely generated free monoids,
V includes all the morphisms onto M , and becomes a variety of monoids in
the usual sense. One likewise recovers the varieties of finite semigroups by
restricting C to contain non-erasing morphisms. With additional restrictions on
C, one recovers the language families from [1].

In the original definition of these “C-varieties”, C was permitted to be any
class of morphisms between free finitely-generated monoids as long as it is closed
under composition. We have preferred to alter the definition so that C is required
to contain all the length-preserving morphisms between free monoids. This
condition is satisfied by all the examples encountered so far in applications, and
it smoothes out various technical difficulties.

While [18] established the basic correspondence between C-varieties and fam-
ilies of regular languages, fundamental questions about the underlying algebra
were not considered. In the present paper we begin to fill this gap.

We first give in Section 3 a version of Reiterman’s theorem [14] concerning
the definition of C-varieties by identities. Independently of us, Kunc [5] also
developed the equational theory for C-varieties. Kunc worked with the original
definition of these varieties, but as a drawback, his identities must be interpreted
in a non-standard manner. The new definition of C-varieties allows one a sim-
plified presentation which follows closely the corresponding proof for varieties
of finite monoids, as given for instance in [6].

As an illustration, when C is the class of length-preserving morphisms, we
give the identities describing the C-variety generated by the syntactic morphism
of a language of the form (a1a2 · · · ak)+, where a1, . . . , ak are distinct letters.
This example actually occurred in a preliminary study of the long-standing
open conjecture that there are languages of generalized star-height > 1. This
problem is indeed equivalent to the existence of non-trivial identities satisfied
by the syntactic morphisms of all languages of generalized star-height ≤ 1.

In Section 4, we study an analogue of the Mal’cev product of C-varieties, and
show in particular that if C is the class of length-multiplying morphisms, the
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C-variety of quasi-aperiodic stamps, which occurs in [1], can be decomposed as
a Mal’cev product of two simpler varieties. Identities for the Mal’cev product
of two varieties are described in Section 6.

We outline in Section 5 the theory of positive C-varieties, and use it in Section
7 to extend to this setting the results of [12] on the polynomial closure of a class
of languages. In particular it permits to greatly simplify the presentation of [12],
which originally needed two separate definitions for the polynomial closure: one
when languages are considered as subsets of a free monoid, and another one
when they are considered as subsets of a free semigroup.

2 C-varieties
Let C be a class of morphisms between finitely generated free monoids that
satisfies the following properties:

(1) C is closed under composition. That is, if A, B and C are finite alphabets,
and f : A∗ → B∗ and g : B∗ → C∗ are elements of C, then g ◦ f belongs
to C.

(2) C contains all length-preserving morphisms.
Examples include the classes of all length-preserving morphisms (morphisms for
which the image of each letter is a letter), of all length-multiplying morphisms
(morphisms such that, for some integer k, the length of the image of a word is k
times the length of the word), all non-erasing morphisms (morphisms for which
the image of each letter is a nonempty word), all length-decreasing morphisms
(morphisms for which the image of each letter is either a letter of the empty
word) and all morphisms.

A stamp is a morphism from a finitely generated free monoid onto a finite
monoid. The size of a stamp ϕ : A∗ → M is by definition the size of M . A
C-morphism from a stamp ϕ : A∗ → M to a stamp ψ : B∗ → N is a pair (f,α),
where f : A∗ → B∗ is in C, α : M → N is a monoid morphism, and ψ◦f = α◦ϕ.

A∗ B∗

M N

f

ϕ ψ

α

Figure 2.1: A C-morphism.

A C-morphism (f,α) is a C-projection if the map f : A∗ → B∗ satisfies
f(A) = B. Note that, in this case, f and α are necessarily onto. Indeed,
f(A∗) = B∗ and thus f is onto. Furthermore, ψ is onto, and thus ψ ◦ f = α ◦ϕ
is onto. It follows that α is onto.

A C-morphism (f,α) is a C-inclusion if the morphism α : M → N is injective.
In particular, if ϕ : B∗ → M is a stamp, f : A∗ → B∗ is an element of C and
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ι : Im(ϕ◦f) → M is the inclusion morphism, then the pair (f, ι) is a C-inclusion
from ϕ ◦ f : A∗ → Im(ϕ ◦ f) into ϕ.

We say that a stamp ϕ : A∗ → M C-divides a stamp ψ : B∗ → N and write
ϕ ≺ ψ if there is a stamp θ : C∗ → K, a C-inclusion (f,α) : θ → ψ and a
C-projection (g,β) : θ → ϕ.

In [18], a different definition of division was given. There, it was said that
ϕ C-divides ψ if there is a division diagram

A∗ B∗

M NIm(ψ ◦ f) ⊆

f

ϕ ψ

η

Figure 2.2: A division diagram.

with η onto, f ∈ C and ϕ = η ◦ ψ ◦ f .

Proposition 2.1 The two definitions of division are equivalent.

Proof. Suppose first that ϕ C-divides ψ according to the definition of this paper.
We then have a diagram with two commuting squares (see Figure 2.3 below)
such that α is injective and g(C) = A. There thus exists k : A → C such that
g ◦ k = 1A. The map k extends to a length-preserving morphism (also denoted
by k) from A∗ into C∗.

A∗ C∗ B∗

M K N

g

k

h

ϕ θ ψ

β α

Figure 2.3: ϕ C-divides ψ.

Setting f = h◦k and η = β◦α−1, we obtain the diagram of Figure 2.2. Now since
C contains all length-preserving morphisms and is closed under composition, k
and f are in C. Next, observe that

Im(ψ ◦ f) = ψ ◦ h(k(A∗)) ⊆ ψ ◦ h(C∗) = α ◦ θ(C∗) ⊆ Im(α)

so β ◦ α−1 is well defined. Secondly,

η ◦ψ ◦f = η ◦ψ ◦h◦k = η ◦α◦θ ◦k = β ◦α−1 ◦α◦θ ◦k = β ◦θ ◦k = ϕ◦g ◦k = ϕ
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Thus ϕ divides ψ in the sense of [18].
Conversely, suppose we have the division diagram of Figure 2.2. We then

have a commutative diagram

A∗ A∗ B∗

M Im(ψ ◦ f) N

1A∗ f

ϕ ψ ◦ f ψ

η ι

where ι is the inclusion morphism. This shows that ϕ divides ψ in the sense of
this paper.

When the class C of morphisms is understood, we omit the prefix C- and
simply use the terms projection, inclusion and divides.

It follows directly from closure under composition and the definition of divi-
sion given in [18] that division is transitive. Note that division is not antisym-
metric, but if ϕ ≺ ψ and ψ ≺ ϕ then the finite monoids Im(ϕ) and Im(ψ) are
isomorphic.

The restricted direct product of two stamps ϕ1 and ϕ2 is the stamp ϕ with
domain A∗ defined by ϕ(a) = (ϕ1(a),ϕ2(a)). The image of ϕ is a submonoid of
the monoid M1 × M2.

A∗

M1

M2

Im(ϕ) ⊆ M1 × M2

ϕ1

ϕ2

ϕ

π1

π2

Figure 2.4: The restricted direct product of two stamps.

A C-variety of stamps is a class of stamps closed under C-division and finite
restricted direct products (possibly empty). Equivalently, a C-variety is a class
of stamps closed under C-projections, C-inclusions and finite restricted direct
products.

When C is the class of all (resp. length-preserving length-multiplying, non-
erasing, length-decreasing) morphisms, we use the term all-variety (resp. lp-
variety, lm-variety, ne-variety, de-variety).
As an example of C-variety, consider the class MOD of all stamps ϕ from a free
monoid A∗ onto a finite cyclic group such that, for all a, b ∈ A, ϕ(a) = ϕ(b).
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Proposition 2.2 The class MOD is an lm-variety (and also an lp-variety).

Proof. Consider the diagram given in Figure 2.1. First assume that (f,α) is a
projection and that ϕ is in MOD. Then N is a quotient of M and thus is also
a cyclic group. Furthermore, if b, b′ ∈ B then b = f(a) and b′ = f(a′) for some
a, a′ ∈ A. Now since ϕ is in MOD, ϕ(a) = ϕ(a′). It follows that

ψ(b) = ψ(f(a)) = α(ϕ(a)) = α(ϕ(a′)) = ψ(f(a′)) = ψ(b′)

showing that ψ belongs to MOD.
Next assume that (f,α) is an inclusion and that ψ is in MOD. Then C

is a subgroup of D and hence is also cyclic. Furthermore, if a, a′ ∈ A, then
|f(a)| = |f(a′)| since f is length-multiplying. It follows that ψ(f(a)) = ψ(f(a′))
and α(ϕ(a)) = α(ϕ(a′)) since ψ ◦ f = α ◦ ϕ. Since α is injective, it follows that
ϕ(a) = ϕ(a′).

Finally, let ϕ1 : A∗ → M1 and ϕ2 : A∗ → M2 be two stamps of MOD.
Then their restricted direct product is clearly in MOD, since if a, a′ ∈ A, then
(ϕ1(a),ϕ2(a)) = (ϕ1(a′),ϕ2(a′)). Thus MOD is an lm-variety.

If ϕ : A∗ → M is a stamp, consider the set ϕ(A) as an element of the monoid
P(M) of the subsets of M . This element has a unique idempotent power, which
is also a subsemigroup of M , called the stable subsemigroup of ϕ. A stamp is
said to be quasi-aperiodic if its stable subsemigroup is aperiodic. More generally,
given a variety of finite semigroups V, a stamp is said to be a quasi-V stamp
if its stable subsemigroup belongs to V. It is stated in [18] that the quasi-V
stamps form an lm-variety (and also an lp-variety), denoted by QV.

3 The Reiterman theorem for C-varieties
3.1 Metric monoids

Recall that a metric on a set E is a map d : E2 → R+ satisfying the following
properties:

(1) for every (u, v) ∈ E2, d(u, v) = d(v, u),
(2) for every (u, v) ∈ E2, d(u, v) = 0 if and only if u = v

(3) for every (u, v, w) ∈ E3, d(u, w) ≤ d(u, v) + d(v, w)
A metric is an ultrametric if it satisfies the stronger condition
(3′) for every (u, v, w) ∈ E3, d(u, w) ≤ max(d(u, v), d(v, w))

A metric monoid is a monoid M equipped with a metric d, such that (M, d)
is a complete metric space and the multiplication of M is uniformly contin-
uous. Morphisms between two metric monoids are required to be uniformly
continuous.

In this section, we will treat every finite monoid M as a metric monoid
equipped with the discrete metric d defined by

d(s, t) =

{
0 if s = t

1 otherwise

Let V be a C-variety of stamps. An important example of metric monoid is the
free pro-V monoid on A, which we now define. A stamp ϕ : A∗ → M separates
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two words u and v of A∗ if ϕ(u) (= ϕ(v). Given two words u, v ∈ A∗, we set

rV(u, v) = min
{
Card(M) there is a stamp ϕ : A∗ → M of V

that separates u and v}

and dV(u, v) = 2−rV(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
We first establish some general properties of dV.

Proposition 3.1 The following properties hold for every u, v, w ∈ A∗

(1) dV(u, v) = dV(v, u)
(2) dV(uw, vw) ≤ dV(u, v) and dV(wu, wv) ≤ dV(u, v)
(3) dV(u, w) ≤ max{dV(u, v), dV(v, w)}

Proof. The first assertion is trivial. A stamp of V separating uw and vw
certainly separates u and v. Therefore dV(uw, vw) ≤ dV(u, v), and dually,
dV(wu, wv) ≤ dV(u, v).

Let ϕ : A∗ → M be a stamp of V separating u and w. Then ϕ separates
either u and v, or v and w. It follows that min(rV(u, v), rV(v, w)) ≤ rV(u, w)
and hence dV(u, w) ≤ max{dV(u, v), dV(v, w)}.

If V is the C-variety of all stamps onto a finite monoid, we simplify the notation
dV to d.

Proposition 3.2 The function d is an ultrametric on A∗.

Proof. Properties (1) and (3) of the definition of an ultrametric follow from
Proposition 3.1. Suppose that d(u, v) = 0. In particular, the syntactic morphism
of the language {u} does not separate u from v, showing that u = v. Thus by
Proposition 3.1, d is an ultrametric.

In the general case, dV is not always a metric, because one may have
dV(u, v) = 0 even if u (= v. For instance, if V is a C-variety of stamps onto com-
mutative monoids, dV(ab, ba) = 0, since there is no way to separate ab and ba
in a commutative monoid. To work around this inconvenience, we first observe
that, by Proposition 3.1, the relation ∼V defined by

u ∼V v if and only if dV(u, v) = 0

is a congruence on A∗. Equivalently, u ∼V v if and only if, for each stamp
ϕ : A∗ → M of V, ϕ(u) = ϕ(v). Let πV be the natural morphism from A∗ onto
A∗/∼V.

Proposition 3.3 Every stamp ϕ : A∗ → M of V factors through πV.

Proof. It is now an immediate consequence of the definition of πV.

Proposition 3.2 can now be generalized as follows.

Proposition 3.4
(1) The function dV is an ultrametric on A∗/∼V.
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(2) The product on A∗/∼V is uniformly continuous for this metric.

Proof. (1) follows directly from Proposition 3.1, since dV(u, v) = 0 implies
u ∼V v by definition. We use the same proposition to obtain the relation

dV(uv, u′v′) ≤ max{dV(uv, uv′), dV(uv′, u′v′)} ≤ max{dV(v, v′), dV(u, u′)}

which proves (2).

3.2 Profinite monoids

The completion of the metric space (A∗, d), denoted by Â∗, is called the free
profinite monoid on A. The completion of the metric space (A∗/∼V, dV), de-
noted by F̂V(A), is called the free pro-V monoid on A. These topological
monoids satisfy the following properties:

Proposition 3.5 Let V be a C-variety of stamps and A a finite alphabet.
(1) The monoid F̂V(A) is compact.
(2) The natural morphism πV from (A∗, d) onto (A∗/∼V, dV) is uniformly

continuous.
(3) Every stamp ϕ : A∗ → M of V is uniformly continuous for dV. Further-

more, there is a uniformly continuous morphism π from A∗/∼V onto M
such that ϕ = π ◦ πV.

(4) Every morphism of C is uniformly continuous for dV.

Proof. (1) Since F̂V(A) is complete, it suffices to verify that, for every n > 0,
A∗ is covered by a finite number of open balls of radius < 2−n. Consider the
congruence ∼n defined on A∗ by

u ∼n v if and only if ϕ(u) = ϕ(v) for every stamp of V of size ≤ n.

Since A is finite, there are only finitely many morphisms from A∗ onto a monoid
of size ≤ n, and thus ∼n is a congruence of finite index. Furthermore, dV(u, v) <
2−n if and only if u and v are ∼n-equivalent. It follows that the ∼n-classes are
open balls of radius < 2−n and cover A∗.

(2) Let πV be the natural morphism from A∗ onto A∗/∼V. Since dV(u, v) ≤
d(u, v), πV is uniformly continuous.

(3) Let ϕ be a stamp of V of size n. If dV(u, v) < 2−n, then in particular
ϕ(u) = ϕ(v). Therefore ϕ is uniformly continuous. Since πV(u) = πV(v) implies
ϕ(u) = ϕ(v), there is a morphism π from A∗/∼V onto M such that ϕ = π ◦πV.
This morphism is uniformly continuous for the same reason as ϕ.

(4) Let f : A∗ → B∗ be a morphism of C. If ϕ is a stamp of V separating
f(u) and f(v), then ϕ ◦ f is a stamp of V separating u and v. It follows that
dV(f(u), f(v)) ≤ dV(u, v), and thus f is uniformly continuous.

It is a well known fact that a uniformly continuous function from a metric
space (E, d) into a metric space (E ′, d′) admits a uniformly continuous extension
ϕ̂ : Ê → Ê′. Furthermore this extension is unique.

Corollary 3.6
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(1) The morphism πV extends uniquely to a uniformly continuous morphism
from (Â∗, d) onto (F̂V(A), dV).

(2) Every stamp ϕ : A∗ → M of V extends uniquely to a uniformly continuous
morphism from Â∗ onto M and induces a unique uniformly continuous
morphism π̂ from F̂V(A) onto M .

(3) Every morphism f : A∗ → B∗ of C induces a unique uniformly continuous
morphism from F̂V(A) into F̂V(B).

Proof. The corollary is an immediate consequence of Proposition 3.5 and of
the result on extensions of uniformly continuous functions recalled above.

Note that the distance dV on F̂V(A) can be defined directly by setting

rV(u, v) = min
{
Card(M) there is a stamp ϕ : A∗ → M of V

such that ϕ̂(u) (= ϕ̂(v)}

and dV(u, v) = 2−rV(u,v).
We now state the key property of the free pro-V monoid.

Theorem 3.7 Let ϕ : A∗ → M be a stamp. Then ϕ belongs to V if and only
if there is a uniformly continuous morphism π̂ from F̂V(A) onto M such that
ϕ = π̂ ◦ πV.

M

A∗ F̂V(A)

ϕ

πV

π̂

Proof. By Corollary 3.6, ϕ induces a uniformly continuous morphism ϕ̂ from
F̂V(A) onto M such that ϕ = ϕ̂ ◦ πV.

Conversely, suppose there is a uniformly continuous morphism π̂ from F̂V(A)
onto M such that ϕ = π̂ ◦ πV. The set

D = {(u, v) ∈ F̂V(A) × F̂V(A) | π̂(u) = π̂(v)}

is the inverse image under π̂ of the diagonal of M ×M , and since M is discrete
and π̂ is continuous, it is a clopen subset of F̂V(A)× F̂V(A). Let F be the class
of all morphisms of the form α̂ : F̂V(A) → Mα, where α : A∗ → Mα is a stamp
of V. For each α ∈ F , let

Cα = {(u, v) ∈ F̂V(A) × F̂V(A) | α̂(u) (= α̂(v)}

Each Cα is open by continuity of α̂. Furthermore, if (u, v) does not belong to
any Cα, then α̂(u) = α̂(v) for each stamp of V, which gives dV(u, v) = 0, u = v
and π̂(u) = π̂(v), and thus (u, v) ∈ D. It follows that the family D ∪ (Cα)α∈F
is a covering of F̂V(A) × F̂V(A) by open sets, and since F̂V(A) is compact, it
admits a finite subcovering, say D ∪ (Cα)α∈F , where F is a finite set.
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Let u, v ∈ A∗ and α ∈ F . If α(u) = α(v), then α̂ ◦ πV(u) = α̂ ◦ πV(v)
and thus (πV(u),πV(v)) /∈ Cα. It follows that if α(u) = α(v) for each α ∈ F ,
then (πV(u),πV(v)) ∈ D, which implies that π̂ ◦ πV(u) = π̂ ◦ πV(v), that
is ϕ(u) = ϕ(v). Consequently ϕ is a projection of a substamp of the stamp∏

α∈F α and thus belongs to V.

Let A be a finite alphabet and let ϕ : A∗ → M be a stamp. By Corollary
3.6, ϕ extends to a morphism from Â∗ onto M , also denoted by ϕ. Furthermore,
any C-morphism f : A∗ → B∗ extends to a morphism from Â∗ onto B̂∗, also
denoted by f .

3.3 Identities

We now extend the notion of identity as follows. Let u, v ∈ Â∗. A stamp
ϕ : B∗ → M satisfies the identity u = v if, for every C-morphism f : A∗ → B∗,
ϕ ◦ f(u) = ϕ ◦ f(v). A variety V satisfies a given identity if every stamp of
V satisfies this identity. We also say in this case that the given identity is an
identity of V.

We now show that identities are stable under the morphisms of C.

Proposition 3.8 Let V be a C-variety and let u = v be an identity of V, with
u, v ∈ Â∗. If f : A∗ → B∗ is a morphism of C, then f(u) = f(v) is also an
identity of V.

Proof. Let ϕ : C∗ → M be a stamp of V and let g : B∗ → C∗ be a C-morphism.
Then, g ◦ f : A∗ → C∗ is also a C-morphism, and thus ϕ◦ g ◦ f(u) = ϕ◦ g ◦ f(v).
It follows that f(u) = f(v) is an identity of V.

We now show that identities of V are closely related to free pro-V monoids.

Proposition 3.9 Let A be a finite alphabet. Given two elements u and v of
Â∗, u = v is an identity of V if and only if πV(u) = πV(v).

Proof. If u = v is an identity of V, then u and v cannot be separated by any
stamp of V. Thus dV(u, v) = 0, u ∼V v and πV(u) = πV(v). Conversely,
suppose that πV(u) = πV(v), and let ϕ : B∗ → M be a stamp of V. If
f : A∗ → B∗ is a C-morphism, then ϕ ◦ f is in V and by the definition of
dV, ϕ ◦ f(u) = ϕ ◦ f(v). It follows that u = v is an identity of V.

Corollary 3.10 Let V and W be two C-varieties of stamps satisfying the same
identities on the alphabet A. Then F̂V(A) and F̂W(A) are isomorphic.

We are now ready to state the generalization of Reiterman’s theorem. Given
a set E of identities, we denote by [[E]] the class of stamps satisfying all the
identities of E.

Theorem 3.11 A class of stamps is a C-variety if and only if it can be defined
by a set of identities.
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Proof. The fact that every class of stamps defined by a set of identities is a
variety can be proved easily.

Let V be a C-variety. Let E be the class of all identities which are satisfied
by every stamp of V and let W = [[E]]. Clearly V ⊆ W. Let ϕ : A∗ → M be a
stamp of W. This stamp can be extended to a uniformly continuous morphism
from Â∗ onto M . Let u, v ∈ Â∗. By Proposition 3.9, if πV(u) = πV(v), then
u = v is an identity of V and thus is satisfied by ϕ. In particular, πV(u) = πV(v)
implies ϕ(u) = ϕ(v) and thus there exists a morphism π̂ : F̂V(A) → M such
that ϕ = π̂ ◦ πV. We claim that π̂ is uniformly continuous. Since F̂V(A) is
compact by Proposition 3.5, it suffices to verify that π̂ is continuous. Let F be
a subset of the discrete monoid M . We first observe that π̂−1(F ) = πV(ϕ−1(F )).
Since ϕ is continuous, ϕ−1(F ) is closed. Now, Â∗ is compact, πV is continuous,
and F̂V(A) is Hausdorff. It follows that πV(ϕ−1(F )) is closed, proving the
claim. It now follows from Theorem 3.7 that ϕ is in V. Thus V = W.

We now give some examples of identities.
(1) MOD is defined by the single identity aω−1b = 1, both as an lm-variety

and an lp-variety. It is worth taking a moment to prove this, noting
that the identity implies, in both cases, the identities aω = 1 and a = b.
Without the condition that C contains length-preserving morphisms we
cannot arbitrarily substitute one letter for another and deduce aω = 1
from aω−1b. In the context of all-varieties and ne-varieties, the same
identities imply that the semigroup is trivial.

(2) The lm-variety of stamps onto aperiodic monoids is defined by the familiar
identity xω = xω+1. But there is no finite basis for the identities of the
lp-variety of stamps onto aperiodics.

(3) It is shown in [10] that the languages of generalized star-height ≤ 1 form an
lp-variety of languages, to which corresponds an lp-variety of stamps. Thus
the long-standing open conjecture that there are languages of generalized
star-height > 1 is equivalent to the existence of non-trivial identities for
this variety. Thus an important problem is to try to find a nontrivial
identity for this lp-variety (assuming one exists!)

3.4 An example

Let Ak denote the k-letter alphabet {a1, . . . , ak} and let Vk be the lp-variety of
stamps generated by the syntactic morphism of the language (a1a2 · · · ak)+ of
A∗

k. The goal of this section is to give the identities describing Vk. The proof
requires some arguments from combinatorics on words.

Let A be a finite alphabet, let k ≥ 2 and let 0 ≤ r < k. Given a word w, let
Sr,k(w) be the set of letters of w occurring in positions that are congruent to r
modulo k. That is, if w = c0 · · · cn−1, with each ci in A, then

Sr,k(w) = {cr, cr+k, cr+2k, . . .}

Let us say that w is k-redundant if the sets Sr,k, for 0 ≤ r < k, are not pairwise
distinct.

Example 3.1 Let A = {a, b, c, d, r} and w = abracadabra. Then S0,3 =
{a, d, r}, S1,3 = {a, b, c}, S2,3 = {a, b, r}. Thus w is not redundant.
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Define an equivalence relation ∼k on A∗ by setting u ∼k v if and only if
either u and v are both k-redundant, or if |u| ≡ |v| mod k and Sr,k(u) = Sr,k(v)
for 0 ≤ r < k.

Lemma 3.12 For each k ≥ 2, ∼k is a congruence on A∗

Proof. It is clear that ∼k is a congruence relation, and that it has finite index.
To prove that it is a congruence, we need to verify that if u ∼k v and a ∈ A,
then ua ∼k va and au ∼k av. This is obviously the case if u and v are both
k-redundant. If not, then the desired equivalences follow at once from the
following facts:

(a) Sr,k(ua) =

{
Sr,k(u) ∪ {a} if |u| ≡ r − 1 mod k

Sr,k(u) otherwise

(b) Sr,k(au) =

{
S0,k(u) ∪ {a} if r = 1
Sr−1,k(u) otherwise

Thus the equivalence classes of ua and au depend only on the equivalence class
of u.

Observe that the congruence class consisting of the k-redundant words is the
zero element of the quotient monoid A∗/∼k.

We are now ready to state the main result of this subsection:

Theorem 3.13 Let ϕ : A∗ → M be a stamp. The following conditions are
equivalent:

(1) ϕ factors through ∼k,
(2) ϕ belongs to Vk,
(3) ϕ satisfies the following identities, where, for 0 ≤ i ≤ k, ui = x1 · · ·xi.

(a) for 0 ≤ i ≤ k − 2, yxuix = xuix = xuixy,
(b) xuk−1y = yuk−1x,
(c) u2

k = uk.

Proof. (1) implies (2). It suffices to show that the projection morphism from
A∗ onto A∗/∼k belongs to Vk. This morphism factors through the restricted
direct product of the syntactic morphisms of the classes of ∼k, so it suffices
to show that each of these classes belongs to the lp-variety Vk of languages
generated by (a1a2 · · · ak)+. Consider first a nonzero congruence class. It is
either the set consisting of the empty word alone, or else of the form

(B1 · · ·Bk)∗B1 · · ·Bi,

where 1 ≤ i ≤ k and the Bj are pairwise disjoint subsets of A. This language is
the intersection of the languages

(A1 · · ·Ak)∗A1 · · ·Ai,

over all partitions {A1, . . . , Ak} of A such that Bj ⊆ Aj for 1 ≤ j ≤ k. Each of
these is in turn the inverse image of the language of A∗

k

L = (a1a2 · · · ak)∗a1 · · · ai
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under the length-preserving morphism that maps each Aj to the letter aj . Fi-
nally,

L = (a1a2 · · · ak)+(ai+1 · · ·ak)−1

which is in Vk(A∗), so each congruence class is in V .
The language {1} of A∗ is the inverse image of the language {1} of A∗

k under
any length-preserving morphism. Further, we have

{1} = (a1a2 · · ·ak)+(a1 · · ·ak)−1 \ (a1a2 · · · ak)+

and thus {1} ∈ V(A∗).
Finally, since the zero congruence class is the complement of the union of all

the other classes, it too is in V(A∗).
(2) implies (3). It is easy to see that the syntactic morphism of (a1a2 · · · ak)+

satisfies the given identities.
(3) implies (1). We describe a distinguished representative for each nonzero

congruence class. For this, we suppose that the alphabet A is linearly ordered.
Given pairwise disjoint subsets (Sr,k)0≤r<k of A and 0 ≤ m < k, we construct a
word w = a1 · · ·at using the following algorithm. The ith step of the algorithm
determines the letter ai. If, after i steps, all the letters of

⋃
1≤j≤i Sj,k have been

used, and i ≡ m mod k, then the algorithm terminates, and we set w = a1 · · · ai.
Otherwise we set ai+1 to be the least unused letter of S(i+1) mod k,k if such an
unusued letter exists, or the greatest letter of S(i+1) mod k,k, under the ordering
on A, if all letters of this set have been used.

For example, suppose k = 3, A = {a, b, c, d, e, f}, S0,3 = {a, c, d}, S1,3 =
{b, e}, S2,3 = {f} and m = 2. We write these three sets as the columns of a
table, then fill out the shorter columns by repeating the last element:

a b f
c e f
d e f

We then read the normal form from the table, proceeding row by row until the
final row, stopping when the length of the word is congruent to m mod k. In
this instance, the word obtained is abfcefde.

Obviously, each word w in A∗ is either congruent to 0, or congruent to a
unique word in this normal form. We show that w can be transformed, in a
sequence of steps, to this unique normal form, and that each step preserves the
value under ϕ. To describe the transformations, we again write a word, row by
row, in the form of a table with k columns. Since the length of the word might
not be exactly divisible by k, the last row of the table might be shorter than
the other rows, and thus some of the rightmost columns might have one fewer
letter than the other columns.

The identity (b) implies that we can permute the letters of any column
without changing the value, under ϕ, of the associated word. We’ll call this a
permutation transformation. The identity (c) implies that we can replace any
row (with the exception of the last row, if it is incomplete) by two copies of
the same row, and, similarly, replace two identical adjacent rows by a single
copy, without changing the value under ϕ. These are called idempotent trans-
formations. Note that both types of transformations preserve the ∼k-class as
well.
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By using permutation transformations we can always transform a word into
one in which the columns of the associated table are sorted according to the
order of A. If the word represented is not in normal form, and the columns
are sorted, then either some column contains two occurrences of a letter that is
not the greatest letter of the column, or some column contains an unnecessary
repetition of its greatest letter.

In the first instance, the table contains rows of the form xax′, yby′ and
zcz′, where x, x′, y, y′, z, z′ ∈ A∗, a, b ∈ A, |x| = |y| = |z|, |x′| = |y′|, and
zcz′ is the last row of the table. We can permute the columns so that the row
yay′ is replaced by yby′, and zaz′ becomes the last row of the table. We can
then duplicate the row yby′. We then use another sequence of permutation
transformations to obtain rows xax′, yby′ and zcz′ as the last row. We then
eliminate the duplicated row and sort the columns. As a result we arrive at a
word with one less occurrence of a in the column in question. We do this for
each repeated occurrence of a letter that is not the greatest in its column.

For the second instance, of a column in a sorted table contains an unnecessary
repetition of its last letter, then every letter in the last complete row of the table
must appear in an earlier row of the table, and thus the last two complete rows
of the table are identical. We then apply an idempotent transformation to
eliminate the duplicated row.

Now suppose u ∼k v. If u and v are both k-redundant, then they can each
be transformed, by a series of permutation transformations, to words in which
some row contains a repeated letter. The identities (a) imply that any such word
is the (necessarily unique) zero element of M , and thus ϕ(u) = ϕ(v). If u and v
are not k-redundant, then the above argument shows that there is a word w in
normal form such that ϕ(u) = ϕ(w) = ϕ(v). This completes the proof.

It might be helpful to see an example of the reduction process described above.

Example 3.2 Let k = 3 and let w = abecdeabfab. This word is not 3-
redundant. The tabular representation is

a b e
c d e
a b f
a b

Using permutation transformations we sort the columns

a b e
a b e
a b f
c d

Using an idempotent transformation, we eliminate the repeated row:

a b e
a b f
c d
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The following steps eliminate the repeated a in the first column:

a b e
c b f
a d

a b e
c b f
c b f
a d

c b e
a b f
a b f
c d

c b e
a b f
c d

a b e
c b f
c d

We proceed similarly to remove the repeated b in the second column, and even-
tually arrive at:

a b e
c d f
c d

which gives the normal form abecdfcd.

4 Mal’cev products

In this section, we extend to C-varieties of stamps the classical notion of Mal’cev
product of varieties.

Let V1 and V2 be varieties of finite semigroups and let M and N be finite
monoids. Recall that a relational morphism τ : M → N is a (V1,V2)-relational
morphism if, for every subsemigroup T of N in V2, the semigroup τ−1(T )
belongs to V1.

Let W be a C-variety of stamps. Denote by (V1,V2) M©W the class of all
stamps ϕ : A∗ → M for which there exists a stamp ψ : A∗ → N of W such that
the relational morphism τ = ψ ◦ ϕ−1 is a (V1,V2)-relational morphism.

A∗

M N

ϕ

ψ ◦ ϕ−1

ψ

If V1 = V and V2 is the trivial variety of semigroups, the notation simplifies
to V M©W (this is the Mal’cev product of V and W).

Proposition 4.1 The class (V1,V2) M©W is a C-variety.

Proof. Let µ : A∗ → M and ν : B∗ → N be two stamps and let (f,α) be a
C-morphism from µ to ν. By definition, ν ◦ f = α ◦ µ.

First assume that µ ∈ (V1,V2) M©W and that (f,α) is a projection. Then
f and α are onto and there is a stamp κ : A∗ → K of W such that κ ◦ µ−1 is a
(V1,V2)-relational morphism. Since f(A) = B, there is a map g : B → A such
that f ◦ g = 1B. Let us extend g into a length-preserving morphism from B∗

into A∗. Let γ = κ ◦ g and let R = Im(γ). By construction R is a submonoid
of K. Let us denote by ι : R → K the inclusion map. Then γ = ι−1 ◦ κ ◦ g and
the pair (g, ι) is an inclusion from γ into κ. In particular, the stamp γ is in W.
The situation is summarized in the diagram below:
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A∗

B∗

M

N

K

R

κ

fg

µ

ν

α

γ

ι

Let τ = γ ◦ ν−1. We claim that τ is a (V1,V2)-relational morphism. First
observe that

τ−1 = ν ◦ γ−1 = ν ◦ g−1 ◦ κ−1 ◦ ι = ν ◦ f ◦ g ◦ g−1 ◦ κ−1 ◦ ι
⊆ ν ◦ f ◦ κ−1 ◦ ι = α ◦ µ ◦ κ−1 ◦ ι

Now, let T be a subsemigroup of R in V2. Then τ−1(T ) = α ◦ µ ◦ κ−1 ◦ ι(R).
Since ι is injective, ι(R) is in V2. Furthermore, since κ ◦ µ−1 is a (V1,V2)-
relational morphism, the semigroup T ′ = µ ◦κ−1 ◦ ι(R) is in V1. It follows that
α(T ′) is also in V1, proving the claim. Therefore ν belongs to (V1,V2) M©W.

Suppose now that ν ∈ (V1,V2) M©W and that (f,α) is an inclusion. Then
α is injective and there is a stamp κ : B∗ → K of W such that κ ◦ ν−1 is
a (V1,V2)-relational morphism. The situation is summarized in the diagram
below

A∗ B∗

M N K

κ

f

µ ν

α

Let γ = κ ◦ f . Since f ∈ C, γ is a stamp of W. Let τ = γ ◦ µ−1. We claim that
τ is a (V1,V2)-relational morphism. Let T be a subsemigroup of K in V2 and
let T ′ = ν ◦ κ−1(T ). Since κ ◦ ν−1 is a (V1,V2)-relational morphism, T ′ is in
V1. Furthermore, since α is injective, α−1 ◦ α is the identity on M . Therefore,
using the relation α ◦ µ = ν ◦ f , we obtain

τ−1(T ) = α−1 ◦ α ◦ γ−1 ◦ κ−1(T ) = α−1 ◦ ν ◦ f ◦ f−1 ◦ κ−1(T )

⊆ α−1 ◦ ν ◦ κ−1(T ) = α−1(T ′)

Now α−1(T ′) is in V1, proving the claim. Therefore µ belongs to (V1,V2) M©W.
Finally, let µ1 : A∗ → M1 and µ2 : A∗ → M2 be two stamps of (V1,V2) M©W.

By definition, there exist two stamps of W, κ1 : A∗ → K1 and κ2 : A∗ → K2

such that κ1 ◦ µ−1
1 and κ2 ◦ µ−1

2 are (V1,V2)-relational morphisms. Let κ :
A∗ → K be the restricted direct product of κ1 and κ2 and µ : A∗ → M be the
restricted direct product of µ1 and µ2. We claim that κ ◦ µ−1 is a (V1,V2)-
relational morphism from M to K. Let π1 and π2 be the projections from
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K1 × K2 onto K1 and K2, respectively. Let T be a subsemigroup of K in V2.
Then

µ ◦ κ−1(T ) = µ ◦ κ−1
1 (π1(T )) ∩ µ ◦ κ−1

2 (π2(T ))

It follows that µ ◦ κ−1(T ) is in V1, proving the claim. Therefore µ belongs to
(V1,V2) M©W.

Recall that a variety of finite semigroups V is monoidal if S ∈ V implies S1 ∈ V.

Proposition 4.2 If V is a monoidal variety of finite semigroups, then QV =
V M©MOD.

Proof. Let α : A∗ → M be a stamp of V M©MOD. By definition, there is a
stamp β : A∗ → G of MOD, such that τ = β ◦ α−1 : M → G is a V-relational
morphism.

A∗

M G

α

τ

β

Let n be an integer such that α(An) is the stable subsemigroup of α. Then, in
particular, α(An) = α(An|G|). On the other hand, since β is a stamp of MOD,
β(An|G|) = (β(A)|G|)n = {1}, where 1 is the identity of G. It follows that
α(An) is a subsemigroup of the semigroup τ−1(1). But since τ is a V-relational
morphism, τ−1(1) is in V, and so is α(An). Thus α is in QV.

Let α : A∗ → M be a stamp of QV and let S = α(An) be the stable
subsemigroup of α. Since α is in QV, S is a semigroup of V. Define a morphism
β : A∗ → Z/nZ by setting β(a) = 1 for all a ∈ A. By construction, β is in MOD
and α ◦ β−1(0) = α(An)∗ = {1} ∪ S. It follows that β ◦ α−1 is a V-relational
morphism and thus M ∈ V M©MOD.

Corollary 4.3 The following equality holds: QA = A M©MOD.

5 The ordered case

5.1 Ordered monoids and ordered stamps

Just as Eilenberg’s theory of varieties has been extended to the ordered case
[7], the theory developed in the present paper can be extended to include C-
varieties of ordered stamps. This extension is relatively straightforward, and
we only give here the main definitions and results, together with some of the
changes required in the proofs of the main results.

A relation ≤ on a monoid M is stable if, for every x, y, z ∈ M , x ≤ y implies
xz ≤ yz and zx ≤ zy. An ordered monoid is a monoid equipped with a stable
partial order relation.

A congruence on an ordered monoid (M,≤) is a stable quasi-order which is
coarser than ≤. In particular, the order relation ≤ is itself a congruence. If 2
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is a congruence on (M,≤), then the equivalence relation ∼ associated with 2 is
a monoid congruence on M . Furthermore, there is a well-defined stable order
on the quotient set M/∼, given by [s] ≤ [t] if and only if s 2 t. Thus (M/∼,≤)
is an ordered monoid, also denoted by M/2.

The product of a family (Mi)i∈I of ordered monoids is the ordered monoid
defined on the set

∏
i∈I Mi. The multiplication and the order relation are defined

componentwise.
A morphism from an ordered monoid (M,≤) into an ordered monoid (N,≤)

is a monoid morphism ϕ : M → N such that s1 ≤ s2 implies ϕ(s1) ≤ ϕ(s2).
Ordered submonoids and quotients are defined in the usual way. Complete
definitions can be found in [13].

An order ideal I of an ordered monoid (M,≤) is a subset of M such that if
x ∈ I and y ≤ x then y ∈ I.

An ordered stamp is an onto morphism from a finitely generated free monoid
onto a finite ordered monoid. A C-morphism from a stamp ϕ : A∗ → (M,≤) to
a stamp ψ : B∗ → (N,≤) is a pair (f,α), where f : A∗ → B∗ is in C, α : M → N
is a morphism of ordered monoids, and ψ ◦ f = α ◦ ϕ.

The notions of C-inclusion, C-projection, C-division, C-varieties of ordered
stamps and Mal’cev products can now be readily extended to the ordered case.

5.2 Languages

A language L of A∗ is recognized by an ordered monoid (M,≤) if and only if
there exist an order ideal I of M and a monoid morphism η from A∗ into M
such that L = η−1(I).

Let A∗ be a free monoid. Given a language L of A∗ we define the syntactic
congruence ∼L and the syntactic preorder ≤L as follows:

(1) u ∼L v if and only if for all x, y ∈ A∗, xvy ∈ L ⇔ xuy ∈ L,

(2) u ≤L v if and only if for all x, y ∈ A∗, xvy ∈ L ⇒ xuy ∈ L.

The monoid A∗/∼L is called the syntactic monoid of L, and is denoted by
M(L). The monoid A∗/∼L, ordered with the stable order relation induced by
≤L is called the ordered syntactic monoid of L. The syntactic (ordered) monoid
of a rational language is finite.

A set of languages closed under finite intersection and finite union is called
a positive boolean algebra. Thus a positive boolean algebra always contains the
empty language and the full language A∗ since ∅ =

⋃
i∈∅ Li and A∗ =

⋂
i∈∅ Li.

A positive boolean algebra closed under complementation is a boolean algebra.
A class of recognizable languages is a correspondence V which associates with

each alphabet A a set V(A∗) of recognizable languages of A∗.
A positive C-variety of languages is a class of recognizable languages V such

that
(1) for every alphabet A, V(A∗) is a positive boolean algebra,
(2) if ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),
(3) if L ∈ V(A∗) and if a ∈ A, then a−1L and La−1 are in V(A∗).

A C-variety of languages is a positive C-variety of languages closed under com-
plement.
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If V is a C-variety of ordered stamps, we denote by V(A∗) the set of lan-
guages whose ordered syntactic morphisms are in V. Then V is a positive C-
variety of languages. Conversely, one can associate with any positive C-variety
of languages V the C-variety of stamps V generated by the ordered syntactic
morphisms of the languages of V .

The following result extends simultaneously the results of the first author
[7] and of the second author [18].

Theorem 5.1 The correspondences V → V and V → V define bijections be-
tween the C-varieties of ordered stamps and the positive C-varieties of languages.

The proof is a straightforward generalization of the two aforementioned re-
sults and is therefore omitted.

6 Identities of Mal’cev products

In [11], Pin and Weil gave a set of identities defining the Mal’cev product of two
varieties of finite semigroups. This result can be adapted as follows.

Theorem 6.1 Let W be a C-variety of stamps and let V = [[E]] be a variety
of ordered semigroups. Then V M©W is defined by the identities of the form
σ̂(x) ≤ σ̂(y), where x ≤ y is an identity of E with x, y ∈ B̂∗ for some finite
alphabet B and σ : B+ → A+ is a semigroup morphism such that, for all
b, b′ ∈ B, W satisfies the identity σ(b) = σ(b′) = σ(b2).

We now apply this result to the variety QA = A M©MOD. The variety
of semigroups A is defined by the single identity xω = xω+1. On the other
hand, the free pro-MOD monoid is a group and thus, if an identity of the form
u = u2 holds in MOD, then the identity u = 1 also holds in MOD. Therefore,
we obtain

Proposition 6.2 The lm-variety (resp. lp-variety) QA is defined by the set of
identities of the from uω = uω+1, where u = 1 is an identity of MOD.

One can take for instance u = aω−1b, or u = baω−2cabω−2b, etc. If QA is
considered as an lm-variety, this result can be improved as follows (see [5]):

Proposition 6.3 The lm-variety QA is defined by the single identity

(xω−1y)ω = (xω−1y)ω+1

Proof. It follows from Proposition 6.2 that the identity (xω−1y)ω = (xω−1y)ω+1

is satisfied by QA.
Conversely, suppose ϕ : A∗ → M satisfies this identity. If ϕ is not in QA,

then the stable subsemigroup ϕ(Ak) contains a nontrivial group element g. Let
u, v ∈ Ak be such that ϕ(v) = g and ϕ(u) is the identity e of the group generated
by g. Since

ϕ(vω−1u)ω = e = ϕ(u)

and
ϕ(vω−1u)ω+1 = g−1
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the identity is not satisfied, a contradiction.

Observe that in the second part of the proof, we needed to be able to choose
u and v to be words of equal length for any desired length. So this argument
does not show ϕ ∈ QA if we interpret the identity over Clp. In fact there is no
finite basis for the pseudoidentities of QA as an lp-variety. This is shown by
the family of languages

Lr = ((a+
1 · · · a+

r )2)∗

over the alphabet Ar = {a1, . . . , ar}. It is easy to see that the syntactic mor-
phism of Lr is not in QA, but the image of B∗ where B is a strict subset of Ar

is aperiodic.

7 Polynomial closure

In this section, we extend to C-varieties the main results of [12].
The polynomial closure of a class of languages L of A∗ is the set of languages

that are finite unions of languages of the form L0a1L1 · · · anLn, where the ai’s
are letters and the Li’s are elements of L.

By extension, if V is a positive C-variety of languages, we denote by Pol V the
class of languages such that, for every alphabet A, Pol V(A∗) is the polynomial
closure of V(A∗).

Let, for 0 ≤ i ≤ n, Li be recognizable languages of A∗, let ηi : A∗ → M(Li)
be their syntactic ordered stamps and let

η : A∗ → Im(η) ⊆ M(L0) × M(L1) × · · ·× M(Ln)

be the ordered stamp defined by

η(u) = (η0(u), η1(u), . . . , ηn(u))

Let a1, a2, . . . , an be letters of A and let L = L0a1L1 · · · anLn. Let µ : A∗ →
M(L) be the syntactic ordered stamp of L. The properties of the relational
morphism

τ = η ◦ µ−1 : M(L) → M(L0) × M(L1) × · · ·× M(Ln)

were intensively studied in the literature. We cite below the most recent of
these results [9]. Recall that an ordered semigroup (S,≤) belongs to the variety
of finite ordered semigroups LJ+ if and only if, for every s in S and every
idempotent e in S, ese ≤ e.

Proposition 7.1 The relational morphism τ : M(L) → M(L1)×M(L2)× · · ·×
M(Ln) is a (LJ+,LJ+)-relational morphism.

The algebraic characterization of the polynomial closure was given in [12] for
varieties of languages and in [9] for positive varieties. It can be further extended
as follows.

Theorem 7.2 Let V be a C-variety of ordered stamps and let V be the associated
positive C-variety of languages. Then Pol V is a positive C-variety and the
associated C-variety of ordered stamps is the Mal’cev product (LJ+,LJ+) M©V.
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It is interesting to observe that, in [12], two different definitions of the poly-
nomial closure were used. One for classes of languages of A∗ — the one given
above — and another one for classes of languages of A+: the polynomial closure
of a class of languages L of A+ is the set of languages of A+ that are finite unions
of languages of the form u0L1u1 · · ·Lnun, where n ≥ 0, the ui’s are words of A∗

and the Li’s are elements of L. If n = 0, one requires of course that u0 is not
the empty word.

This definition can be recovered in the framework of varieties of stamps. The
first step consists in interpreting the notion of variety of finite semigroups.

Let us introduce a notation: if (S,≤) is an ordered semigroup, denote by
(SI ,≤) the ordered monoid defined as follows: SI = S ∪ {I}, where I is a new
identity, and the order on SI is the order on S, together with the trivial relation
I ≤ I.

Let V be a variety of finite ordered semigroups. We now associate to V the
ne-variety of ordered stamps V′ consisting of all morphisms ϕ : A∗ → M such
that the semigroup ϕ(A+) is in V. In particular, if (S,≤) ∈ V and ϕ : A+ → S
is an onto morphism, the stamp ϕI : A∗ → SI defined by setting ϕI(1) = I, is
in V′.

We now compare V to V ′, the positive ne-varieties of languages corresponding
to V and V′, respectively.

Lemma 7.3 Every language of V(A+) is a language of V ′(A∗). Conversely, if
L is a language of V ′(A∗), then L ∩ A+ is a language of V(A+).

Proof. Let L be a language of V(A+) and let ϕ : A+ → (S,≤) be its ordered
syntactic morphism. Then (S,≤) ∈ V and thus ϕI ∈ V′. Let J be an order
ideal of S such that L = ϕ−1(J). Then J is also an order ideal of SI and thus
L is a language of V ′(A∗).

Conversely, if L ∈ V ′(A∗), its ordered syntactic morphism ϕ : A∗ → (M,≤)
belongs to V′ and thus ϕ(A+) ∈ V. It follows that L ∩ A+ ∈ V(A+).

Using V ′ in the place of V avoids the need for two separate definitions for the
polynomial closure and Theorem 7.2 is sufficient in all the cases. More precisely:

Proposition 7.4 For each alphabet A, Pol V ′(A∗) is the set of languages that
are finite union of languages of the form u0L1u1 · · ·Lnun, where n ≥ 0, the ui’s
are words of A∗ and the Li’s are elements of L.

Proof. First, every language of the form L0a1L1 · · ·anLn, with a0, . . . , an ∈ A,
is also of the form u0L1u1 · · ·Lnun.

We claim that V ′(A∗) contains the languages {1} and A+. Indeed, the trivial
semigroup 0 belongs to V. Therefore the stamp ϕI : A∗ → SI = {1, 0} defined
by ϕI(1) = 1 and ϕI(a) = 0 for each a ∈ A is in V′. This proves the claim,
since {1} = (ϕI)−1(1) and A+ = (ϕI)−1(0).

Consider now a language L which is a union of languages of the form

u0L1u1 · · ·Lnun

where the ui’s are words of A∗ and the Li’s are elements of L. Observing that
if u = a1 · · · ak, then {u} = {1}a1{1}a2{1} · · · {1}ak{1}, we may assume that
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each word ui is either a letter or the empty word. Next, the formula

KK ′ = K({1}∩ K ′) ∪
⋃

a∈A

Ka(a−1K ′)

shows that the ui’s equal to the empty word can be eliminated, since if L ∈ L,
then a−1L ∈ L. Thus L belongs to Pol V ′(A∗).

Similar subtleties occurring in [9] for the definition of the Schützenberger
product of n semigroups also disappear within the framework of C-varieties.

8 Conclusion

In this paper, we generalized to C-varieties a number of algebraic results of
varieties of monoids, but there is still a lot to do. In particular, it is possible to
extend the theory of wreath products to C-varieties. Due to space limitation, it
was not possible to include this generalization in the present paper and it will
be the topic of a subsequent article.
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Birkhäuser Boston Inc., Boston, MA, 1994.

[18] H. Straubing, On logical descriptions of regular languages, in LATIN
2002, Berlin, 2002, pp. 528–538, Lect. Notes Comp. Sci. n̊ 2286, Springer.

23


