
Wreath Products of Forest Algebras, with Applications to Tree Logics

Mikolaj Bojańczyk
University of Warsaw

Howard Straubing
Boston College

Igor Walukiewicz
CNRS, LaBRI, Bordeaux

Abstract—We use the recently developed theory of forest
algebras to find algebraic characterizations of the languages of
unranked trees and forests definable in various logics. These
include the temporal logics CTL and EF, and first-order logic
over the ancestor relation. While the characterizations are in
general non-effective, we are able to use them to formulate
necessary conditions for definability and provide new proofs
that a number of languages are not definable in these logics.

I. INTRODUCTION

Logics for specifying properties of labeled trees play
an important role in several areas of Computer Science.
Recently, attention has turned to logics for unranked trees,
in which there is no a priori bound on the number of
children a node may have. Barceló and Libkin [1] and
Libkin [2] catalogue a number of such logics and contrast
their expressive power. Many fundamental problems in this
domain remain unsolved. For example, we do not as yet
possess an effective criterion for determining whether a
given property of trees is expressible in the temporal logics
CTL, or CTL*, or in first-order logic with the ancestor
relation.

For properties of words, analogous questions have been
fruitfully studied by algebraic means: The logics in question
are typically no more expressive than monadic second-order
logic, and thus the property of words expressed by a formula
defines a regular language L. Expressibility in a given logic
can often be determined by verifying some property of the
syntactic monoid of L—the transition monoid of the minimal
automaton of L. The earliest work in this direction is due
to McNaughton and Papert [3] who studied first-order logic
with linear order, and showed that a language is definable in
this logic if and only if its syntactic monoid is aperiodic—
that is, contains no nontrivial groups. A comprehensive
survey treating many different predicate logics is given in
Straubing [4]; temporal logics are studied by Cohen, Perrin
and Pin [5] and Wilke [6], among others.

There have been a number of efforts to extend this
algebraic theory to trees; a notable recent instance is in
the work of Ésik and Weil on preclones [7], [8]. Recently,
Bojańczyk and Walukiewicz [9] introduced forest algebras,
a generalization of the syntactic monoid for languages of
forests of unranked trees. This algebraic model is rather
simple, and in contrast to others studied in the literature,
has already yielded effective criteria for definability in a

number of logics: see Bojańczyk [10], Bojańczyk-Segoufin-
Straubing [11], Bojańczyk-Segoufin [12]. Forest algebras are
also implicit in the work of Benedikt and Segoufin [13] on
first-order logic with successor.

In the present paper we continue this line of research
by studying the wreath product of forest algebras. Wreath
products of transformation monoids play an important role in
the theory for words, and we find that the definition and im-
portant properties of this product, especially its connection
to a composition operation on languages and to generalized
temporal operators, extend to forest algebras with no real
change. We consider some standard temporal logics, CTL,
CTL* first-order logic with ancestor, PDL, as well as two
less known variants: EF and graded PDL. The first, is the
fragment of CTL with EF as the only operator. The second,
is an extension of PDL allowing us to say, for example, that
there are at least three paths satisfying some property.

We show the following: (a) To each of the logics menti-
noned above, we associate a class of ‘basic’ forest algebras
with the property that a language of forests is definable
in the logic if and only if it is recognized by an iterated
wreath product of the associated basic algebras. (b) For
EF and CTL, the base reduces to a single algebra, but
for the others we show that there is no finite base. As a
consequence, none of these logics can be generated by a
finite collection of generalized temporal operators. By using
our algebraic framework, we are able to give a simple and
general proof of this fact. (c) For the logics that do not have
a finite base, we are nonetheless able to establish effective
necessary and sufficient conditions for a forest algebra to
belong to the associated base. (d) We give a (new) proof of
an effective necessary and sufficient condition for a forest
language to be definable in EF. Our argument shows that
an algebraic decomposition theory for forest algebras is both
feasible and useful. (e) We do not, on the other hand, find
analogous necessary and sufficient conditions for the other
logics mentioned above, and this remains an outstanding
open problem. However, we are able to use our framework
to establish algebraic necessary conditions for definability
in these logics, and consequently to prove that a number
of specific languages are not definable in them. (f) We also
find necessary and sufficient conditions for a given first-order
definable language to be definable in CTL*, and for a given
language definable in graded PDL to be definable in PDL.

We note that Ésik and Ivan [14], [15] have done work of a

similar flavor for CTL (for trees of bounded rank). Our work
here is of considerably larger scope, both in the number of
different logics considered, and the concrete consequences
our algebraic theory permits us to deduce. For reasons of
space, many of the proofs have been reduced to a sketch, or
omitted. These will appear in the full paper.

II. TREES, FORESTS AND CONTEXTS

Let A be a finite alphabet. Formally, forests and trees
over A are expressions generated by the following rules:
(i) if s is a forest and a ∈ A then as is a tree; (ii) if
(t1, . . . , tk) is a finite sequence of trees, then t1 + · · ·+ tk
is a forest. We permit this summation to take place over
an empty sequence, yielding the empty forest, which we
denote 0. This gets the recursion started. So, for example,
s = a(b0 + c(a0 + ab0)) + a(a0 + b0) is a forest. Normally,
when we write such expressions, we delete the zeros. We
depict s in the obvious fashion as an ordered forest of two
ordered trees whose nodes are labeled by the letters a, b, c.
In this example, the two root nodes are both labeled a, and
there are five leaves altogether. The set of forests over A is
a monoid with respect to forest concatenation s + t, with
the empty forest 0 being the identity. We denote this set by
HA.

If x is a node in a forest, then the subtree of x is simply
the tree rooted at x, and the subforest of x is the forest
consisting of all subtrees of the children of x. In other words,
if the subtree of x is as, with a ∈ A and s ∈ HA, then the
subforest of x is s. Note that the subforest of x does not
include the node x itself, and is empty if x is a leaf. A forest
language over A is any subset of HA.

A context p over A is formed by deleting a leaf from
a nonempty forest and replacing it by a special symbol
�. Think of � as a kind of place-holder, or hole. Given
a context p and a forest s, we form a forest ps upon
substituting s for the hole in p.

?

p s ps

In a similar manner, we can substitute another context q for
the hole, and obtain a new context pq. The set of contexts
over A forms a monoid, with respect to context composition
pq, with the empty context � being the identity. We denote
this set by VA.

Note that for all forests s, t ∈ HA, VA contains a context
s+�+ t, in which the hole has no parent, such that (s+
�+ t)u = s+ u+ t for all u ∈ HA.

Strictly speaking, our trees, forests and contexts are or-
dered, so that s + t is a different forest from t + s unless
s = t or one of s, t is 0. But all the applications in the
present article effectively concern unordered trees, so there
is no harm in thinking of + as a commutative operation on
forests.

III. LOGICS FOR FOREST LANGUAGES

For a general treatment of predicate and temporal logics
for unranked trees, see Libkin [2]. The logics we describe
below are all fragments of monadic second-order logic,
and thus the languages they define are all regular forest
languages. These languages can be also represented by
automata that are a minor modification of the standard
bottom-up tree automata. The transition function is modified
to cope with unbounded branching, and the definition of
acceptance needs to consider states in the roots of all the
trees in the forest. See [9] for the definition.

A. First-order logic for trees and forests

Let A be a finite alphabet. Consider first-order logic
equipped with unary predicates Qa for each a ∈ A, and
a single binary predicate ≺ . Variables are interpreted as
nodes in forests over A. Qax is interpreted to mean that
node x is labeled a, and x ≺ y to mean that node x is
a (non-strict) ancestor of node y. A sentence φ – that is,
a formula without free variables – consequently defines a
language Lφ ⊆ HA consisting of forests over A that satisfy
φ. For example, the sentence

∃x∃y(Qax ∧Qay ∧ ¬(x ≺ y) ∧ ¬(y ≺ x))

defines the set of forests containing two ≺-incomparable
occurrences of a. We denote this logic by FO[≺]. It is
more traditional to consider logics over trees rather than
over forests. For FO[≺] we need not worry too much
about this distinction, since we can express in first-order
logic the property that a forest has exactly one component
(∃x∀y(x ≺ y)). Thus the property that a set of trees is first-
order definable does not depend on whether we choose to
interpret sentences in trees or in forests.

B. Temporal logics

We describe here a general framework for temporal logics
interpreted in trees and forests. By setting appropriate pa-
rameters in the framework we generate all sorts of temporal
logics that are traditionally studied. The general framework
is sometimes called graded propositional dynamic logic
(graded PDL).
Syntax of temporal formulas. Temporal formulas are built
starting with atomic label formulas a for a ∈ A. We combine
temporal formulas with the usual boolean operations. We
also define a temporal operator: if k > 0, Φ is a finite set
of formulas, and L ⊆ Φ+ is a regular language of words
over the alphabet Φ, then EkL is a formula. The idea is

that EkL says there are at least k paths that satisfy L; the
precise semantics are defined below. We place an additional
restriction, called unambiguity, on the use of this operator:
We require that the formulas Φ = {φ1, . . . , φn} are formally
disjoint: that is, for all i > 1, φi has the form ψ∧¬

∨
j<i φj

for some formula ψ. We write EL for E1L.
Semantics of temporal formulas. Usually, satisfaction for
formulas is defined with respect to trees. For forests, the con-
ventions are less well-established. Nevertheless, semantics
for forests will be important for us, especially in the context
of the wreath products. We will therefore use two notions
of satisfaction: a tree-satisfaction relation t |=t ϕ, which
coincides with the usual notion of satisfaction, and a forest-
satisfaction relation t |=f ϕ, which is slightly unusual. The
definition of the two will be mutually recursive. When t is
a forest, then only the forest-satisfaction t |=f ϕ is defined,
but when t is a tree, then both t |=f ϕ and t |=t ϕ are
defined, with different meanings.

A label formula a is tree-satisfied by the trees whose root
label is a, but is not forest-satisfied by any forest (even if the
forest contains only a single tree). Whether a formula EkL
is tree-satisfied by a tree as depends only on the subforest
of the root and not on the root node: that is, as |=t ψ if
and only if s |=f ψ. Finally, if s ∈ HA, then s |=f EkL if
and only if there are at least k distinct paths in s that satisfy
L in the following sense: A path x1 · · ·xn is a sequence of
nodes connected by the child relation, beginning in one of
the roots, and ending in some node, not necessarily a leaf.
The path satisfies L if there is a sequence φ1, . . . , φn ∈ Φ
such that the word φ1 · · ·φn belongs to L and for each i =
1, . . . , n, the subtree of xi tree-satisfies φi. Note that tree,
and not forest, satisfaction is required in the subtree of xj .
Note also that the paths need not end in leaves, and that the
sequence φ1, . . . , φn is uniquely determined by the path, due
to the unambiguity condition on Φ. As the paths need not end
in leaves, some paths may be prefixes of others, for instance,
the tree aaa forest-satisfies E3a+. Boolean operations have
their usual interpretation.

Given a temporal formula ψ, we write Lψ for the set of
forests that forest-satisfy ψ.

EF : When ψ describes a property of words, then Fψ
describes the words where ψ holds at some position, possibly
the first. We obtain an analogous temporal operator for trees
and forests by defining EFψ to be EL, where L = (¬ψ)∗ψ.
Thus, when s is a forest, s |=f EFψ if and only if some
subtree of s, possibly rooted at a root of s, tree-satisfies ψ.
When t is a tree, t |=t EFψ if some proper subtree of t tree-
satisfies ψ. Note how the tree semantics of this temporal
operator resembles the “strict semantics” of EF in which
one ignores the current node, while the forest semantics
resemble the non-strict semantics. We denote by EF the
forest languages definable by a formula built from the label
formulas a ∈ A using boolean operations and the temporal
operator EF.

CTL : When ψ, φ describe properties of words, then
ψUφ describes the set of words a1 · · · an where for some
i = 1, . . . , n, the word beginning in position i satisfies φ, and
all the words beginning in positions 1, . . . , i − 1 satisfy ψ.
The analogous operator for trees and forests is E(ψ∧¬φ)∗φ,
which we denote EψUφ. The forest semantics is that the
subtree of some node x tree-satisfies the formula φ, and the
subtree at every strict ancestor of x tree-satisfies ψ. For the
tree semantics, the root of the tree is ignored. By nesting this
operator we get the logic CTL. (The dual operator E¬(ψUφ)
is redundant in finite trees.)

First-order logic : We can use the same formalism to
characterize the languages definable in FO[≺] in terms of
a temporal logic.

Theorem 1 A forest language is definable in FO[≺] if and
only if it is definable by a formula in the fragment of the
language of temporal formulas using the operator EkL only
for word languages L that are first-order definable.

This is a slight adaptation of Hafer and Thomas [16],
and Moller and Rabinovich [17]. We will give the proof
in the full paper. Note that the theorem fails without the
restriction on unambiguity of the alphabet Φ. For instance,
if we took A = {a, b, c}, Φ = {φ1, φ2}, where φ1 = a ∨ c,
φ2 = b ∨ c, then L = (φ1φ2)+ is first-order definable as a
word language. However, the language defined by EL is not
first-order definable. (If it were, we would be able to define
in first-order logic the set of forests consisting of a single
path with an even number of occurrences of c.)

CTL* and PDL: Finally, we define two more temporal
logics by modifying the definitions above. CTL* is like the
fragment of temporal logic in Theorem 1, except that we
only allow k = 1 in EkL. In particular, CTL* is a subset
of FO[≺]. We also consider PDL, which is obtained by
restricting the temporal formulas EkL to k = 1, but without
the restriction on L being first-order definable. If we place no
restriction on either the multiplicity k or the regular language
L, we obtain graded PDL. (Actually, one can show, using
methods similar to Theorem 1, that graded PDL has the
same expressive power as chain logic, which is the fragment
of monadic second order logic where set quantification is
restricted to chains, i.e. subsets of paths.)

C. Language composition and bases

In this section we provide a more general notion of tem-
poral logic, where the operators are given by regular forest
languages. This is similar to notions introduced by Ésik in
[14]. The benefit of the general framework is twofold. First,
it corresponds nicely with the algebraic notion of wreath
product presented later in the paper. Second, it allows us to
state and prove negative results, for instance our infinite base
theorem, which says that the number of operators needed to
obtain first-order logic cannot be finite.

Logic Languages in the language base for alphabet A
EF {“some node with a” : a ∈ A}
CTL {“some path in B∗b” : B ⊆ A, b ∈ A}
FO[≺] {“at least k paths in L” : k ∈ N, L ∈ FOA[<]}
CTL* {“some path in L” : L ∈ FOA[<]}
PDL {“some path in L ⊆ A+” : L regular}
graded PDL {“at least k paths in L” : k ∈ N, L regular}

Figure 1. Language bases for temporal logics

We introduce a composition operation on forest languages.
Fix an alphabet A, and let {L1, . . . , Lk} be a partition of
HA. Let B = {b1, . . . , bk} be another alphabet, with one
letter bi for each block Li of the partition. The partition and
alphabet are used to define a relabeling

t ∈ HA 7→ t[L1, . . . , Lk] ∈ HA×B

in the following manner. The set of nodes in t[L1, . . . , Lk]
is the same as in t, except that each node x gets a label
(a, bi), where the first coordinate a is the old label of x in
t, while the second coordinate bi corresponds to the unique
language Li that contains the subforest of x in t. For the
partition and B as above, and L a language of forests over
A×B, we define L{L1, . . . , Lk} ⊆ HA to be the set of all
forests t over A for which s[L1, . . . , Lk] ∈ L.

The operation of language composition is similar to for-
mula composition. The definition below uses this intuition,
in order to define a “temporal logic” based on operators
given as forest languages. First however, we need to com-
ment on a technical detail concerning alphabets. In the
discussion below, a forest language is given by two pieces of
information: the forests it contains, and the input alphabet.
For instance, we distinguish between the set L1 of all forests
over alphabet {a}, and the set L2 of all forests over the
alphabet {a, b} where b does not appear. The idea is that
sometimes it is relevant to consider a language class L that
contains L1 but does not contain L2 (although such classes
will not appear in this particular paper). This distinction will
be captured by our notion of language class: a language class
is actually a mapping L , which associates to each finite
alphabet a class of languages over this alphabet.

Let L be a class of forest languages, which will be
called the language base. The temporal logic with language
base L is defined to be the smallest class TL[L] of
forest languages that contains L, is closed under boolean
operations and under language composition, i.e.

L1, . . . , Lk, L ∈ TL[L] ⇒ L[L1, . . . , Lk] ∈ TL[L]

By restating the definitions of the temporal logics in terms
of language composition, we get the following theorem.

Theorem 2 The logics EF, CTL, FO[≺], CTL* , PDL and
graded PDL have language bases as depicted in Figure 1.

Note that the part about FO[≺] depends on Theorem 1.

IV. FOREST ALGEBRAS

A. Definition of forest algebras

Forest algebras, introduced by Bojańczyk and
Walukiewicz in [9], extend the algebraic theory of
syntactic monoid and syntactic morphism for regular
languages of words to the setting of unranked trees and
forests. A forest algebra is a pair (H,V) of monoids
together with a faithful monoidal left action of V on the
set H. This means that for all h ∈ H, v ∈ V, there exists
vh ∈ H such that (i) (vw)h = v(wh) for all v, w ∈ V
and h ∈ H, (ii) if 1 ∈ V is the identity element, then
1h = h for all h ∈ H, and (iii) if vh = v′h for all h ∈ H,
then v = v′. We write the operation in H additively,
and denote the identity of H by 0. We call H and V,
respectively, the horizontal and vertical components of
the forest algebra. The idea is that H represents forests
and V represents contexts. As was the case with the
addition in HA, this is not meant to suggest that H is a
commutative monoid, although in all the applications in
the present paper H will indeed be commutative. Forest
algebras satisfy an additional condition: For each h ∈ H
there are elements 1 + h, h + 1 ∈ V such that for all
g ∈ H, (1 + h)g = g + h, and (h + 1)g = h + g. A
homomorphism of forest algebras consists of a pair of
monoid homomorphisms (αH , αV) : (H,V) → (H ′, V ′)
such that αH(vh) = αV (v)αH(h) for all v ∈ V and
h ∈ H. We usually drop the subscripts on the component
morphisms and simply write α for both these maps.

Of course, if A is a finite alphabet, then (HA, VA) is a
forest algebra. The empty forest 0 is the identity of HA,
and the empty context � is the identity of VA. This is the
free forest algebra on A, and we denote it A∆. It has the
property that if (H,V) is any forest algebra and f : A→ V
is a map, then there is a unique homomorphism α from A∆

to (H,V) such that α(a�) = f(a) for all a ∈ A.

B. Recognition and syntactic forest algebra

Given a homomorphism α : A∆ → (H,V), and a
subset X of H, we say that α recognizes the language
L = α−1(X), and also that (H,V) recognizes L. A
forest language is regular if and only if it is recognized in
this fashion by a finite forest algebra. Moreover, for every
forest language L ⊆ HA, there is a special homomorphism
αL : (HA, VA) → (HL, VL) recognizing L that is minimal
in the sense that αL is surjective, and factors through every
homomorphism that recognizes L. In particular, (HL, VL)
divides—that is, it is a quotient of a subalgebra of—every
forest algebra that recognizes L. We call αL the syntactic
morphism of L, and (HL, VL) the syntactic forest algebra
of L. If s, s′ ∈ HA, then αL(s) = αL(s′) if and only if
for all v ∈ VA, vh ∈ L ⇔ vh′ ∈ L. This equivalence
is called the syntactic congruence of L. An important fact
in applications of this theory is that one can effectively

compute the syntactic morphism and algebra of a regular
forest language L from any automaton that recognizes L.
(See [9].)

C. Wreath product

We are going to give a definition of the wreath product
of two forest algebras. In the case of words, the wreath
product models cascade product of automata, composition
of formulas, or sequential composition of morphisms. This
will be also the case for forests.

It is easier to begin by describing the sequential compo-
sition of two morphisms. Assume that

α : A∆ → (H,V)

is a forest algebra morphism. For a forest t over A, let tα

be the forest over A ×H obtained from t by changing the
label of each node x from its original label a to the pair
(a, h), where h is the value of α on the subforest of x. In
the sequential composition, we will use a second morphism
that reads the relabeling tα, namely

β : (A×H)∆ → (G,W) .

The sequential composition of α and β is the function αBβ

t 7→ (αB β)(t) = (α(t), β(tα))

The wreath product (H,V) ◦ (G,W) of forest algebras is
designed to describe sequential composition. We stated the
correspondence in the following theorem, which, we hope,
will aid the reader in understanding the motivation behind
the wreath product definition.

Theorem 3 For every two morphisms

α : A∆ → (H,V) β : (A×H)∆ → (G,W) .

there is a morphism from A∆ into the wreath product
(H,V) ◦ (G,W) that, when restricted to forests, is equal
to the sequential composition α B β. Conversely, for every
morphism form A∆ into the wreath product there is an
equivalent sequential composition.

It is not surprising that there is an algebraic construction
that models sequential composition. Such constructions have
been long known for monoids, and for word and tree au-
tomata. The noteworthy fact is that the algebraic construction
for forest algebras happens to be the exact same wreath
product as used for transformation monoids. Actually, one
could even argue that the wreath product is better suited
to forest languages, since it works directly on the forest
algebra, while for word languages one goes from monoids
to so-called transformation monoids.

We now proceed to give the definition of wreath product.
A forest algebra is, in particular, a transformation monoid–
so we can form the wreath product of two of these to
obtain another transformation monoid: Given (H1, V1) and

(H2, V2), we define (H1, V1) ◦ (H2, V2) to be the pair
(H1 ×H2, V1 × V H1

2), with the action defined by

(v1, f)(h1, h2) = (v1h1, f(h1)v2).

As is well known, this definition turns V1 × V H1
2 into a

monoid of faithful transformations on H1 × H2. (Observe
that since we define forest algebras using a left action of V
on H, rather than a right action, our definition of the wreath
product is the reverse of the customary one.) Of course, since
H1, and H2 are themselves monoids, we can give H1×H2

a monoid structure through the usual direct product. Finally,
let h1 ∈ H1, h2 ∈ H2 and consider the map f : H1 → V2

that sends every element to (1 + h2). Then for any g1 ∈
H1, g2 ∈ H2, we have

(1 + h1, f)(g1, g2) = ((1 + h1)g1, (1 + h2)g2)
= (g1 + h1, g2 + h2)
= (1 + (h1, h2))(g1, g2).

Similarly, we find V1 × V H1
2 contains the transformation

(h1, h2)+1. Thus the wreath product of two forest algebras
is a forest algebra.

Well-known properties of the wreath product of transfor-
mation semigroups and monoids carry over unchanged to
this setting. In particular, the wreath product is associative,
so we can talk about the wreath product of any sequence
of forest algebras, and about the iterated wreath product
of an arbitrary number of copies of a single forest algebra.
Likewise, the direct product of two forest algebras embeds in
their wreath product in either direction. As a consequence, if
L1, L2 are recognized by forest algebras (H1, V1), (H2, V2)
respectively, then their union and intersection are both
recognized by (H1, V1) ◦ (H2, V2).

V. WREATH PRODUCT CHARACTERIZATIONS

When A is a class of forest algebras, we write TL[A]
for the class of languages recognized by iterated wreath
products of forest algebras from A . The following corollary
to Theorem 3 justifies this notation.

Corollary 4 Let L be the class of languages recognized
by a class of forest algebras A . Then TL[L] = TL[A].

We also say that A is an algebraic base of the language
class TL[A] (note that there may be several algebraic bases,
just as there may be several language bases). We will
now provide algebraic bases for the logics discussed in
Section III. By the above corollary, all we need to do is
to provide, for each logic, a class of forest algebras that
captures the language base. This is stated in the following
theorem; the algebras used in the statement are described
immediately afterwards.

Logic Algebraic base
EF U1

CTL U2

FO[≺] aperiodic path algebras
CTL* distributive aperiodic algebras
PDL distributive algebras
graded PDL path algebras

Figure 2. Algebraic bases for temporal logics

Theorem 5 The logics EF, CTL, FO[≺], CTL*, PDL and
graded PDL have algebraic bases as depicted in Figure 2.

We proceed to describe the algebras mentioned in Fig-
ure 2. As we will see later, there are no finite bases for
the last four logics in the figure. For the infinite bases we
propose, we will give effective characterizations in terms of
identities in forest algebras. Therefore, to check if a given
forest language belongs to the base it is enough to check if
the identities hold in the finite, syntactic forest algebra of
the language.

First, we recall that an aperiodic finite semigroup S is
one that contains no nontrivial groups. Equivalently, there
exists m > 0 such that sm = sm+1 for all s ∈ S. When we
say that a forest algebra (H,V) is aperiodic, we mean that
the vertical monoid V is aperiodic (which implies that H is
aperiodic).
U1 is the forest algebra ({0,∞}, {1, 0}), with 0 · ∞ =

0 · 0 = ∞. Note that since we use additive notation
in the horizontal monoid, the additive absorbing element
is denoted ∞, while the multiplicative absorbing element
is 0. The vertical monoid of U1 is the unique smallest
nontrivial aperiodic monoid, denoted U1 in the literature.
Every language in the language base of EF is recognized
by U1, and every language recognized by U1 is a boolean
combination of members of the language base of EF, so this
algebra forms an algebraic base for EF.
U2 is the forest algebra ({0,∞}, {1, c0, c∞}) with ch ·

h′ = h for all horizontal elements h, h′. If one reverses the
action from left to right and ignores the additive structure,
U2 is the aperiodic unit in the Krohn-Rhodes Theorem.
The underlying monoid of this transformation semigroup is
usually denoted U2. Every language in the language base
of CTL can be recognized by U2, and conversely, every
language recognized by U2 is a boolean combination of
members of the language base of CTL. So U2 forms an
algebraic base for CTL.

A distributive algebra is a forest algebra (H,V) such
that H is commutative and such that the action of V on
H is distributive: v(h1 + h2) = vh1 + vh2 for all v ∈ V,
h1, h2 ∈ H.

Theorem 6 A forest language is a boolean combination of
languages EL (respectively, languages EL with L first-order

definable) if and only if it is recognized by a distributive
forest algebra (respectively, an aperiodic distributive forest
algebra).

Let us define a path language to be any boolean com-
bination of members of the language base of graded PDL,
and an FO-path language if it is a boolean combination of
members of the language base of FO[≺].

Theorem 7 A finite forest algebra (H,V) recognizes only
path languages if and only if H is aperiodic and commuta-
tive and

vg + vh = v(g + h) + v0 (1)

u(g + h) = u(g + uh) (2)

hold for all g, h ∈ H and u, v ∈ V with u2 = u. (H,V)
recognizes only FO-path languages if and only if H is
aperiodic and commutative, V is aperiodic, and (H,V)
satisfies the two identities above.

We define a path algebra to be a forest algebra (H,V)
satisfying identities 1 and 2 with H aperiodic and com-
mutative. We note that while the “if” proof of Theorem 7
is difficult, the “only if” much easier, and that is the only
direction we need for the applications in Sections VII and
VIII.

Because of the connection with logic, we will call divisors
of the six kinds of iterated wreath products described above
EF-algebras, CTL-algebras, CTL*-algebras, FO-algebras,
PDL-algebras, and graded PDL-algebras, respectively.

Note that for EF and CTL, the algebraic base had one
algebra, while our other bases contained infinitely many
algebras. This turns out to be optimal, as stated below.

Theorem 8 (Infinite base theorem) Suppose a language
class L contains all languages Ln = “exists a path in
(anb)∗c”. Then L cannot have a finite algebraic base.

Here is a brief idea of the proof for aperiodic language
classes (like CTL* and FO[≺]): If there were a finite
algebraic base for these classes, there would exist an integer
m such for every algebra (H,V) of the base and all v ∈ V,
vm = vm+1. It is shown, by induction on the length of
the product, that an iterated wreath product of algebras
satisfying vm = vm+1 cannot recognize Lm.

VI. EF

The following theorem is proved in [9].

Theorem 9 L ⊆ HA is in EF if and only if (i) HL is
idempotent and commutative, and (ii) for every v ∈ VL,
h ∈ HL, we have vh+ h = vh.

Because this property can be effectively verified from the
multiplication tables of HL and VL, we have a decision
procedure for determining whether or not a forest language
given, say, by an automaton that recognizes it, is definable
in EF. This procedure can also be adapted to testing whether
a tree language is EF-definable with tree semantics.

In light of Theorem 5, we have the following result:

Theorem 10 A forest algebra (H,V) divides an iterated
wreath product of copies of U1 if and only if H is idempotent
and commutative, and vh+ h = vh for all h ∈ H, v ∈ V.

Note that this statement is purely algebraic—it makes no
mention of trees, forests, languages or logic. This suggests
that it might be proved in quite a different fashion, reasoning
solely from the structure of the forest algebra. This would
provide a different proof of Theorem 9.

We will present precisely such a proof of Theorem 10 in
the full paper. Here we give a rough outline. It is straight-
forward to show that iterated wreath products of copies of
U1 satisfy the given identities: We simply verify them for U1

and show that they are preserved under wreath product and
division. For the hard direction, we suppose (H,V) satisfies
the identities. The sum of all elements of H is necessarily
the unique absorbing element, which, following our usual
practice, we denote ∞. A subminimal element h of H has
the property that for all v ∈ V, vh = h or vh =∞. For each
such h, we define Hh to be the set {∞}∪{h′ : h ∈ V h′}. It
is possible to define an additive structure and an action Vh
on each Hh so that (H,V) embeds into the direct product
of the (Hh, Vh) over all subminimal elements h, and such
that each of the algebras (Hh, Vh) satisfies the identities.
If there is more than one subminimal element, then each
Hh has cardinality strictly smaller than H, and the result
follows by induction on |H|. If H has a unique subminimal
element, then it is possible to define an additive structure on
H −{0} and an action V ′ such that (H −{0}, V ′) satisfies
the identities, and such that (H,V) embeds in the wreath
product (H − {0}, V ′) ◦ U1. Again the result follows by
induction on |H|.

Theorem 10 is the exact analogue for forest algebras of
a Theorem of Stiffler [18] that a monoid is R-trivial if and
only if it divides a wreath product of copies of U1.

VII. MULTICONTEXTS AND CONFUSION

Here we find necessary conditions for a forest algebra to
be a CTL-algebra, an FO-algebra or a graded PDL-algebra.
We will apply these results in the next subsection to prove
nonexpressibility results for these logics. The conditions we
find are essentially the absence of certain kinds of config-
urations in the forest algebra, analogous to the ‘forbidden
patterns’ of Cohen-Perrin-Pin [5] and Wilke [6].

Let A be a finite alphabet. A multicontext p over A is a
forest in which some of the leaves have been replaced by a

special symbol �, each occurrence of which is called a hole
of the multicontext. A special kind of multicontext, called
a uniform multicontext, is one in which every leaf node is
a hole, and all subtrees at the same level are identical. For
example

a(b(c�+ c�)) + a(b(c�+ c�))

is a uniform multicontext.
The set of holes of a multicontext p is denoted holes(p).

A valuation on p is a map µ : holes(p)→ X, where X can
be a set of forests, or of multicontexts, or elements of H,
where (H,V) is a forest algebra. The resulting value, p[µ],
found by substituting µ(x) for each hole x, is consequently
either a multicontext, a forest, or an element of H. In the
last case, we are assuming the existence of a homomorphism
α : A∆ → (H,V), evaluated at the nodes of p.

Given a set G ⊆ H we write p[G] for the set of all
possible values of p[µ] where µ : holes(p) → G. When
G = {g} is a singleton, we just write p[g]. For g ∈ G and
x ∈ holes(p) we define p[g/x] to be the multicontext that
results from p by putting a tree that evaluates to g in the
hole x. (In particular, p[g/x] has one less hole than p.)

Let (H,V) be a forest algebra. As above, we assume
the existence of a homomorphism from A∆ into (H,V) in
order to define the valuations on p with values in H . We
say that (H,V) has horizontal confusion with respect to a
multicontext p and a set G ⊆ H with |G| > 1 if for every
g ∈ G and x ∈ holes(p):

G ⊆ p[g/x][G].

Intuitively, this means that fixing the value of one of the
holes of p still allows us to obtain any element of G by
putting suitable elements of G into the remaining holes.

We say that (H,V) has vertical confusion with respect to
a multicontext p and a set {g0, . . . , gk−1} ⊆ H with k > 1
if for every i = 0, . . . , k − 1:

p[gi] = gj where j = (i+ 1) (mod k).
This condition is weaker than periodicity of vertical monoid,
because p is a multicontext, and not just a context.

Theorem 11
• If (H,V) is a CTL-algebra, it does not have vertical

confusion with respect to any multicontext.
• If (H,V) is an FO-algebra, it does not have vertical

confusion with respect to any uniform multicontext.
• If (H,V) is a graded PDL-algebra, it does not have

horizontal confusion with respect to any multicontext.

The proofs of all three assertions follow the same general
outline: We show that the base algebras for each class satisfy
the relevant non-confusing condition, and that the condition
is preserved under wreath product and homomorphic images.
(Preservation by subalgebras is trivial.) It is somewhat
difficult to prove this directly for the base algebras for

FO[≺] and graded PDL, but in these instances we can
decompose further, and obtain a base with two different
kinds of algebras: EkL is the composition of languages of
the form Eka and languages of the form EL′, where L′ is
first-order definable if L is. Since languages of the form EL
have distributive syntactic algebras, this is an easier base to
work with.

Theorem 12 It is decidable if a given algebra has a hori-
zontal or vertical confusion.

The first observation needed for the proof is that it is
enough to consider multicontexts over alphabets consisting
of vertical elements of the algebra. Then one can just try
to enumerate all possible candidates, as what matters is
not really the shape of a multicontext, but the behavior of
a multicontext as function. This is rather straightforward
for vertical confusion. It is bit more complicated for the
horizontal variant.

VIII. APPLICATIONS

Example: (Binary trees with every leaf at even depth.) A
labeled binary tree is a tree where every node is either a
leaf, or has exactly two children: one with label a and the
other with label b. (The root label is irrelevant.) Let L1 be
the set of labeled binary trees t over A = {a, b} where every
leaf is at even depth.

A trick due to Potthoff [19] can be used to show, some-
what surprisingly, that L1 is definable in FO[≺]. Here we
use Theorem 11 to show that L1 is not definable in CTL. We
will use two classes of the syntactic congruence: the class h0

(respectively, h1), which contains all concatenations s+ t of
two labeled binary trees with different root labels, such that
all leaves in s+ t are at even (respectively, odd) depth. Now
let p be the multicontext a�+ b�. Observe that p[h0] = h1

and p[h1] = h0. So (HL1 , VL1) has vertical confusion with
respect to p. By Theorem 11, (HL1 , VL1) is not a CTL-
algebra, and thus L1 is not definable in CTL.
Example: (Binary trees with every leaf at even depth,
continued) Now we consider the set L2 of unlabeled binary
trees (that is, trees over a one-letter alphabet {a} where
every node is either a leaf, or has exactly two children)
such that every path from the root to a leaf has even length.
Pothoff’s method just cited can be used to show that this
is definable in first-order logic with the ancestor and next-
sibling relations (the next-sibling relation is used to recover
the a and b labels). We will show, however, that the ancestor
relation alone is not sufficient to recognize L2. In other
words, L2 is not definable in FO[≺]. Let h0 (respectively,
h1) be the set of binary trees where every leaf is at even
(respectively, odd) depth. (Note that h0 is the language L2

itself.) Let p = a(� + �). This is a uniform multicontext,
and we have p[h0] = h1, p[h1] = h0, so by Theorem 11,
L2 is not FO[≺]-definable.

Languages definable in FO[≺] are obviously in the inter-
section of the class of languages definable in FO with ≺
and the next-sibling relationship, and the class of languages
L with commutative HL. This example shows that the
containment is strict. Note that L2 is expressible in graded
PDL so we have also established that the languages in graded
PDL with aperiodic forest algebras need not be definable
in FO[≺] (there is even an example, also due to Potthoff,
which shows that languages definable in graded PDL with
aperiodic forest algebras need not be definable in FO with
≺ and the next-sibling relationship).
Example: (Boolean expressions). Consider the set L3 of
trees over the alphabet {0, 1,∨,∧} that are well-formed
boolean expressions (i.e., all the leaf nodes are labeled 0
or 1, and all the interior nodes are labeled ∨ or ∧) that
evaluate to 1. L3 is contained in a single equivalence class
of the syntactic congruence, as is the set of well-formed trees
that evaluate to 0. We denote the corresponding elements of
HL3 by h1 and h0.

Now consider the uniform multicontext p = ∨(∧(� +
�) + ∧(�+�)). If we put h0 in one of the holes then by
putting hi in all other holes we will , obtain hi (for i = 0, 1),
and analogously if we put h1 in one of the holes. So the
syntactic algebra of L3 has horizontal confusion with respect
to p. Thus L3 is not definable in graded PDL. Observe that
the vertical component of the syntactic algebra of L3 is
aperiodic: In contrast to the word case, languages recognized
by aperiodic algebras are not necessarily expressible in first-
order logic, or even in graded PDL.

Obviously, we can separate CTL∗ and PDL from FO[≺]
and graded PDL, respectively, because the syntactic algebras
for the former classes have idempotent and commutative hor-
izontal parts, while for the latter the horizontal components
need only be aperiodic and commutative. Thus, for example,
any language in FO[≺] that fails to satisfy the idempotency
condition is not in CTL∗. We can use our algebraic methods
to show that this is in fact the only distinction. In the full
paper, we will prove the following fact.

Theorem 13 Let (H,V), (Hj , Vj), j = 1, . . . , k be forest
algebras such that H is idempotent and commutative, each
(Hi, Vi) is a path algebra, and such that (H,V) divides
(H1, V1)◦ · · · ◦ (Hk, Vk). Then each (Hi, Vi) has a distribu-
tive homomorphic image (H ′i, V

′
i) such that (H,V) divides

(H ′1, V
′
1) ◦ · · · ◦ (H ′k, V

′
k).

Theorem 5 immediately yields the following corollary:

Theorem 14 A forest language is definable in CTL∗ (re-
spectively PDL) if and only if it is definable in FO[≺]
(respectively graded PDL) and its syntactic algebra is hor-
izontally idempotent.

The first of of these facts is already known in a somewhat
different form: properties expressible in CTL∗ are exactly

the bisimulation-invariant properties expressible in monadic
path logic (see Moller and Rabinovich [17].)

IX. CONCLUSION AND FURTHER RESEARCH

Results like those in Section VIII are typically proved
by model-theoretic methods. Here we have demonstrated a
fruitful and fundamentally new way, based on algebra, to
study the expressive power of these logics.

Of course, the big question left unanswered is whether we
can establish effective necessary and sufficient conditions
for membership in any of these classes. We do not expect
that the conditions established in Theorem 11 are sufficient.
The approach outlined in Section VI may consitute a model
for how to proceed: a deeper understanding of the ideal
structure of forest algebras can lead to new wreath product
decomposition theorems.

In a sense, we are searching for the right generalization of
aperiodicity. For regular languages of words, aperiodicity of
the syntactic monoid, expressibility in first-order logic with
linear ordering, expressibility in linear temporal logic, and
recognizability by an iterated wreath product of copies of
the aperiodic unit U2 are all equivalent. For forest algebras,
the obvious analogues are, respectively, aperiodicity of the
vertical component of the syntactic algebra, expressibility
in FO[≺], expressibility in CTL, and recognizability by an
iterated wreath product of copies of U2. As we have seen,
only the last two coincide. Understanding the precise rela-
tionship among these different formulations of aperiodicity
for forest algebras is an important goal of this research.

Another way of looking at this research is that it sets the
scene for a Krohn-Rhodes theorem for trees. The Krohn-
Rhodes theorem states that every transformation monoid
divides a wreath product of transformation monoids which
are either U2 or groups that divide the original monoid. The
ingredients of the theorem are therefore: a notion of wreath
product, a notion of an easy transformation monoid U2, and a
notion of a difficult transformation monoid (a group). In this
paper, we have provided some of the ingredients: the wreath
product and the easy objects. (There are several candidates
for the easy objects, e.g. simply U2 or maybe path algebras.
There are probably several Krohn-Rhodes theorems). We
have provided examples of properties one expects from the
difficult objects (the various types of confusion), but we still
have no clear idea what they are (in other words, what is a
tree group?). We have also shown that the wreath product is
strongly related to logics and composition, just as in the case
of words. Finding (at least one) Krohn-Rhodes theorem for
trees is probably the most ambitious goal of this research.

REFERENCES

[1] P. Barceló and L. Libkin, “Temporal logics over unranked
trees,” in LICS, 2005, pp. 31–40.

[2] L. Libkin, “Logics for unranked trees: an overview,” in Au-
tomata, languages and programming, ser. LNCS, vol. 3580,
2005, pp. 35–50.

[3] R. McNaughton and S. Papert, Counter-free Automata. MIT
Press, Cambridge, USA, 1971.

[4] H. Straubing, Finite automata, formal logic, and circuit
complexity, ser. Progress in Theoretical Computer Science.
Boston, MA: Birkhäuser Boston Inc., 1994.

[5] J. Cohen, D. Perrin, and J.-E. Pin, “On the expressive power
of temporal logic,” J. Comput. Syst. Sci., vol. 46, no. 3, pp.
271–294, 1993.

[6] T. Wilke, “Classifying discrete temporal properties,” in
STACS, ser. LNCS, vol. 1563, 1999, pp. 32–46.

[7] Z. Ésik and P. Weil, “On logically defined recognizable tree
languages,” in FSTTCS, ser. LNCS, vol. 2914, 2003, pp. 195–
207.

[8] ——, “Algebraic recognizability of regular tree languages,”
Theor. Comput. Sci, vol. 340, no. 1, pp. 291–321, 2005.

[9] M. Bojanczyk and I. Walukiewicz, “Forest algebras,” in Logic
and Automata: History and Perspectives, E. G. Joerg Flum
and T. Wilke, Eds. Amsterdam University Press, 2008.

[10] M. Bojanczyk, “Two-way unary temporal logic over trees,”
in LICS, 2007, pp. 121–130.

[11] M. Bojanczyk, L. Segoufin, and H. Straubing, “Piecewise
testable tree languages,” in LICS, 2008, pp. 442–451.

[12] M. Bojanczyk and L. Segoufin, “Tree languages defined in
first-order logic with one quantifier alternation,” in ICALP,
ser. LNCS, vol. 5126, 2008, pp. 233–245.

[13] M. Benedikt and L. Segoufin, “Regular tree languages de-
finable in FO,” in STACS, ser. LNCS, vol. 3404, 2005, pp.
327–339.

[14] Z. Ésik, “Characterizing CTL-like logics on finite trees,”
Theor. Comput. Sci., vol. 356, no. 1-2, pp. 136–152, 2006.

[15] Z. Ésik and S. Iván, “Aperiodicity in tree automata,” in CAI,
ser. LNCS, vol. 4728, 2007, pp. 189–207.

[16] T. Hafer and W. Thomas, “Computation tree logic CTL and
path quantifiers in the monadic theory of the binary tree,” in
ICALP, ser. LNCS, vol. 267, 1987, pp. 260–279.

[17] F. Moller and A. M. Rabinovich, “Counting on CTL*: on the
expressive power of monadic path logic,” Inf. Comput., vol.
184, no. 1, pp. 147–159, 2003.

[18] P. Stifflerl, “Extensions of the fundamental theory of finite
semigroups,” Advances in Mathematics, vol. 11, pp. 159–209,
1973.

[19] A. Potthoff, “First-order logic on finite trees,” in Theory and
Practice of Software Development, ser. LNCS, vol. 915, 1995,
pp. 125–139.

