When Can One Finite Monoid Simulate
Another?

Howard Straubing

Computer Science Department
Boston College
Chestnut Hill, MA 02167
Tel.: (617)-552-3977
e-mail:straubin@cs.bc.edu

1 Introduction

Let M and N be finite monoids. We want to somehow use N as a computational
device that reads a sequence of inputs from M and outputs the product, in M,
of this sequence. We ask what relation M must have to IV for this to be possible;
that is, when can N simulate M?

We also ask the related question of when a language, in particular a regular
language, can be recognized by a finite monoid N.

The answers to such questions, of course, depend upon what we mean, pre-
cisely, by using IV as a computational device. There is a classical answer, in which
N is treated as a finite automaton, which we review in Section 2. It turns out
that there are a number of ways to generalize the definitions of simulation and
recognition that give new, and quite interesting, answers to the questions, and
lead to a number of open problems. Moreover, both the answers and problems
have important connections to topics in computational complexity theory, which
we will explore.

The results presented here are all drawn from the research literature on the
connections between circuit complexity and algebra. However we give them a
different treatment, with a new formalism. In particular, our presentation is
directed toward an audience of algebraists, and we approach the subject as a
collection of questions about semigroups. We bring in computational complexity
both as a motivation and a proof technique. We do not give detailed proofs of
all the results cited, but we have included proofs of enough of the theorems to
give the reader a good idea of the available techniques.

2 The Classical Case: Finite Automata

The simplest way to use a monoid N as a computational device is to map each
input letter a to an element ¢(a) of N. To the input sequence a; - - - a,, we then
associate the product

¢(a1)---p(an) € N.

We say that N simulates a finite monoid M if and only if there is such a map
¢: M — N, as well as a map ¢y : N - M, such that

Y(p(m1) -+ - d(my)) = ma - --my,

for all my,...,my; € M. (Implicit in this definition is the requirement that
(1) = 1, since we take the product of the empty sequence in any monoid to be
the identity of the monoid.)

This gives us the following, almost trivial, theorem.

Theorem 1. Let M and N be finite monoids. N simulates M if and only if M
divides N (that is, M is a homomorphic image of a submonoid of N).

Proof. If M divides N, there is a submonoid N’ of N and a homomorphism
1 : N' — M that maps onto M. For each m € M, define ¢(m) to be any n € N’
such that ¥ (n) = m. Since v is a homomorphism, we have

P(p(ma) - - p(my)) = my - - -y,

for all my,...,mg € M. Conversely, let N simulate M, with maps ¢ and ¥,
as in the definition. Let N' be the set of all products ¢(my) - - d(m;), with
my,...m; € M and i > 0. N' is a submonoid of N, and it follows directly from
the definition of simulation that the restriction of ¢ to N' is a homomorphism
onto M. Thus M divides N. O

We write M < N to indicate that M divides N.

Thus, for example, we cannot simulate a non-commutative monoid with a
commutative one, or a nontrivial finite group with a finite aperiodic monoid, or
a nontrivial finite aperiodic monoid with a finite group.

In the theory of computation, computational devices are traditionally viewed
in two different ways: As computers of input-output functions, as in the definition
of simulation given above, or as language recognizers. Let A be a finite alphabet.
We say that a finite monoid N recognizes a subset L of A* if and only if there is
amap ¢: A* — N and a subset X of NV such that

ay---ar € L& ¢(ar) - ¢(ar) € X.

Of course, ¢ extends to a unique homomorphism from A* into N, so we can
just as well say w € L if and only if ¢(w) € X, where ¢ also denotes this
homomorphism. As is very well known, a monoid N recognizes a language L
if and only if M (L), the syntactic monoid of L, divides N. (See, for example,
Pin [15] or Eilenberg [10].) When we use a monoid N to compute in this fashion,
we are treating the elements of N as the states of a finite automaton whose
transition function is given by the multiplication in N. In particular, a language
is recognized by a finite monoid if and only if the language is regular.

3 1-Simulation

Suppose now that our map from input letters to monoid elements is allowed
to vary as we scan an input word. That is, suppose that we are given a family
{¢i,n}1<i<n of maps from a fixed input alphabet A to a finite monoid N, so that
to each input string

w=ai---ap

we associate the monoid element

P(w) = ¢1,n(a1) - - - dn,nlan).

A family of maps of this kind is called a I-program. Usually we will call & a
1-program, and refer to the maps {¢; ,} as the program maps.

We will say that a language L C A* is I-recognized by N if there exists
X C N such that for all w € A*,

we L d(w) € X.

If we take for our input alphabet a finite monoid M, then we say that M is
1-simulated by N if and only if there is a map ¢ : N — M such that for all
sequences my,...my, from M,

Y(p1,(m1) -+ Prk (M) = my -+ -my.

Let us mention now a technical point in the definition of 1-recognition. We
have required that the accepting set X be the same for all input lengths. Suppose
that we relax this requirement, and allow different accepting sets X,, C N for
different input lengths. It is easy to show that if L is recognized by a 1-program
& over N in this sense, then it is recognized in the original sense by a 1-program
@' over a direct product of 2!V — 2 copies of N. The accepting set for &' is the
cartesian product

Ap X -+ X Agni_y,

where the A; are the distinct nonempty proper subsets of N. Similar remarks
apply to the modification of the simulation model so as to allow the function
9 : N — M to be replaced by a separate function 1), for each input length
n : We can always reduce this to the more restrictive model if we replace N by
a direct product of copies of N. The result of these observations is that all the
theorems stated below, in this and in subsequent sections, remain true whichever
of the two recognition or simulation models we use.

Since we place no restriction on the family of program maps, we can 1-
recognize uncountably many languages with very small monoids. However, the
next theorem shows that we gain almost no additional power in simulation, and
almost no additional ability to recognize regular languages.

Theorem 2. Let M and N be finite monoids. If N 1-simulates M, then M
divides a direct product of finitely many copies of N.

Proof. Let Apr = {am : m € M} be a finite alphabet in one-to-one correspon-
dence with M. Let v : A3, — M be the unique homomorphism that maps a, to
m for all m € M. If N 1-simulates M, then there is a 1-program & over N such
that for all w,w’ € A}, with |w| = |w'|, $(w) = $(w') implies v(w) = v(w').
Let {¢i,n} be the family of program maps.

An identity of N over Ay is a pair (w,w') € A%, x A%, such that for every ho-
momorphism 6 : A%, — N, 6(w) = 6(w'). We claim that for every such identity,
v(w) = v(w'). To see that this implies the result, consider the homomorphism

Q:4% > Nx---N

formed by taking the direct product of all homomorphisms 8 : A%, — N (there
are only finitely many such 6). The claim about identities implies that v factors
through ©; that is, there is a homomorphism g from the image of © onto M
such that gyo® =v. Thus M < N x --- x N.

To prove the claim concerning identities, suppose to the contrary that (w,w’)
is an identity of N such that v(w) # v(w'). There is an integer p > 0, such that
for every n € N, n? is an idempotent. We form a new pair of words (w,w’) by
replacing each letter a by the word aa%” ~!. Observe that @ and w’ are the images
of w and w' under a homomorphism from A%, into itself, and thus (w, w’) is also
an identity of N. Furthermore, we have v(W) = v(w) # v(w') = v(w'). If @ and
w' do not have the same length, suppose W is the shorter of the two strings. Since
the lengths differ by a multiple of p, we have [wa'?| = [w'| for some k > 0. We
also have, for any homomorphism 6 : A%, — N, 6(a?) = e, for some idempotent
e € N, so §(w) = ne for some n € N, and thus 8(wa'?) = 6(w). We also have
v(wa'?) = v(w). Thus we could have assumed at the outset that |w| = |w'|, and
we make this assumption now.

Let m = |w| = |w'|. Let n > 0. Color each pair (¢,5) with 1 <i < j <n by
the map f: Apy — N defined by

f((l) = ¢i,n(a)¢i+1,n(a1) T ¢j—1,n(a1)a

for all @ € Aps. It follows from Ramsey’s Theorem that if n is large enough, there
exists a set {1 < i3 < --- < iy < n} such that all (ig,ig41) have the same color
f-Let F: A}, = N be the homomorphism that extends f. Let w = by -+ - by,
and w' = b} ---b,, where the b; and the b} belong to Apr. We set

W =aj' " 'braf? " by b
W' =ai " hap =" Ty b
By the monochromaticity,
P(W) =n1f(b1) - f(bm)n2 = n F(w)n,

and
S(W') =i f(b7) -+ f(br)n2 = ni F(w')na,

for some nq,n2 € N.

Since (w,w') is an identity of N, this gives #(W) = &(W'), and thus since
N simulates M, v(W) = v(W'). But v(W) = v(w) # v(w') = v(W'), a
contradiction.Od

Theorem 2 implies, for example, that we cannot 1-simulate a noncommu-
tative finite monoid with a noncommutative one, a nontrivial aperiodic monoid
with a group, or a nontrivial group with an aperiodic monoid. In this sense, 1-
simulation gives no more power than the classical simulation discussed in Section
2.

We can use the same ideas to characterize the regular languages 1-recognized
by a finite monoid N. If A is a finite alphabet and L C A* is regular, then the
syntactic monoid M (L) is finite. Let py denote the syntactic morphism of L.
The set {ug(A¥) : k& > 0} is a finite subsemigroup of the semigroup of subsets
of M(L), and thus contains an idempotent. So there exists ¢ > 0 such that
ur(AY) = ur(A?Y), that is, pr(AY) is a subsemigroup of M(L). Let B be the
finite alphabet whose letters are the elements of A%, and let n;, : B* — M(L)
be the homomorphism defined by restricting 1, to words over A whose length
is divisible by t.

Theorem 3. Let L C A* be a regular language I-recognized by a finite monoid
N, and let B and 51, be as above. Then every monoid in ng(B) divides a direct
product of copies of N.

Proof. From the definition of the syntactic morphism and the finiteness of M,
there exist uy,...,ug,v1,...,vr € A* with the following property: The value of
pr(w) is entirely determined by the k-tuple of bits whose ‘" bit is 1 if u;wv; € L,
and 0 otherwise. Since L is 1-recognized by N, there is a 1-program & over N,
and a subset X of N, such that for all w € A*, w € L if and only if (w) € X.
As usual, let {¢;,} be the family of program maps. Suppose we are given a
sequence
S1y---38m

of elements of the semigroup ur(A?). Each s; is the image under 5y of some
b; € B. We will define a 1-program ¥ with program maps {¢;,} and input
alphabet B over the monoid N*, as follows: Let

and

vi =y -yl

where each xgi),yg-i) € A. Let b € B be the word a; ---a; € A*. We set the it*
component of ¢y, (b) to

ui

t
T #romes w100 @) - TT S raslmeer s 0] (-

r=1 r=1

We set the it" component of 1, ,,,(b) to

t lvi

T @r+-cmetye st tus o1 @) = TT Srtmte s mtet s s @E7).

r=1 r=1

If 1 < j < m, we set the i** component of 1; ,,, to
-17

¢
LI frt 6 1yet uslmect sl e (05)-
r=1
It follows that the i** component of ¥(sy,...,s,) is ®(u;wv;), where w is the
word obtained by writing by - - - b,, in terms of the alphabet A. Given (nq,...,ng) €
N*_ we map it first to the bit vector that has 1 in component i if and only if
n; € X, and thence to the corresponding element of M (L), if one exists. In this
manner ¥(si,...,8,) is mapped to 8 - -- 8,,. It follows that N* simulates the
semigroup uz,(A?), and thus every submonoid of this semigroup. The conclusion
now follows from Theorem 2. O

Let ¢ > 1. The language MOD, C {0,1}* consists of all bit strings in which
the number of 1’s is divisible by ¢. The language AND C {0,1}*is {1": n > 0}.

Corollary 4. (a) AND is not 1-recognized by any finite group.

(b) Let p > 1 be prime. If MOD),, is 1-recognized by a finite monoid N then N
contains a group of order p. In particular, no finite aperiodic monoid 1-recognizes
MOD,.

Proof. (a) The syntactic morphism of AND maps {0,1}9, for all ¢ > 0, onto
the syntactic monoid U; = {0,1} (considered as a multiplicative submonoid of
the integers). By the theorem, if AND is 1-recognized by a finite monoid N, Uy
divides a direct product of copies of IV, and thus N cannot be a group, since any
divisor of a direct product of finite groups is itself a group.

(b) The syntactic monoid of M OD,, is the cyclic group G, of order p, and the
syntactic morphism g maps 1 to a generator of this group, and 0 to the identity.
It follows that for all ¢t > p — 1, u({0,1}!) = G, and thus, by the theorem, G,
divides a direct product of copies of N, which implies the result. O

The main theorems of this section were adapted from Barrington and Straub-
ing [5].

4 k-Simulation

We may think of the program maps of a 1-program as being a sequence of
instructions. Each instruction has access to one letter of the input string, and
emits a monoid element according to the value of the letter that was read. In
this section we enhance the computational power of our programs by allowing

each instruction to have access to more than one letter of the input. As we shall
see, interesting new phenomena arise. Let k > 0, and let A be a finite alphabet.
A k-program @ over a finite monoid N consists of a family of maps {¢;,} from
A¥ into N, where each I is a k-tuple over {1,...,n}. f w =a; ---a, € A" and
I = (iy,...,ix), then we denote by w; the k-tuple (a;,,...,a;,) € A*, and we
set

sw= [dratwn),
Ie{1,...,n}*

where n = |w|, and where the product is taken in lexicographic order of the I.
Observe that if ¥ = 1, then this coincides with the definition of 1-programs given
in the preceding section. We define k-simulation of one monoid by another, and
k-recognition of a language by a finite monoid, accordingly. The remarks in the
preceding section, concerning k-recognition with a single set of accepting values
as opposed to different sets of accepting values for different length inputs, apply
here as well.

It turns out that nonsolvable finite groups have special computing powers
when we use k-programs with &£ > 1.

Theorem 5. Let G be a finite simple non-abelian group. There exists k > 0 such
that any finite monoid M with |M| < |G| can be k-simulated by G.

The theorem is a fairly easy consequence of the next lemma, due to Maurer and
Rhodes. If n > 0 and S is a semigroup, then a polynomial over S in n variables
is a word over the alphabet SU{z1,...,2,}. Such a polynomial w gives rise to a
function, which we also denote by w, from S™ into S, evaluated by substituting
the n arguments for the respective variables and multiplying in S.

Lemma6. Let G be a finite simple non-abelian group, and let n > 0. Then
every function from G™ into G is realized by a polynomial over G.

For the proof, see Maurer and Rhodes [14] or Straubing [19].

We now prove Theorem 5. Let + : M — G be an injective mapping, and let
v : G? = G be any map that extends the multiplication in M, in the sense that,
for any mi,mq € M,

v(e(my), t(ms)) = t(mims).

By Lemma 6, v is represented by a polynomial wy over G. We claim that for
each n > 0 there is a map v, : G™ — G that extends n-ary multiplication in M,
in the sense that for all mq,...,m, € M,

Vn(L(ml)a) L(mn)) = L(ml T mn)

and that is represented by a polynomial w,, over G whose length is no more than
n'tlo8z [w2] for sufficiently large n. We show this by induction on n. We already
have the claim for n = 2, and we can set w; (x) to be z. Now suppose that n > 2,
and the claim is true for all values less than n. If n is even, we have

v(my---mp) = v(va ((mi),...,t(mz)),va(t(miys),...1(my))).

We form the polynomial w;,, by substituting the polynomials wz (z1,...,72) and
wz (142, ..,2,) for the variables in wy. The resulting polynomial has length
no more than |ws| - |wz|. If n is odd, then we can use the above argument to
construct wyy1, since (n + 1)/2 < n. We can now set

Wn = wn+1($15 ce oy Ty, L(l))a
which gives |w,| = |wp41]- Thus for all n > 2, we have
|wn| < |wa| - [wrg1],
which implies
n] < 15| 195271 = Juy |- T Hos s,
which is less than n>t1°82 1wz for sufficiently large n. This proves the claim.
Since |w;i| = 1, this implies that there exists » > 0 such that |w,| < n" for

all n > 1. It remains to show how to convert the sequence of polynomials {wy}
into a k-program over G. We can write

L(ml o mn) = wn(b(ml); .. .,L(mn)) = fl(mz'1) o 'fp(m’ip)a

where the f; are functions from M into G determined by the polynomial, and
where for all j, 1 <i; <n, and p < n". We can form a sequence of (r + 1)-tuples
over {1,...,n}:

(Sl7i1)7 ERE] (Slhip);
where s, denotes the k*" element of {1,...,n}" in lexicographic order, and (s, j)
denotes the (r 4+ 1)-tuple obtained by adjoining j as the last component to s. We
thus define, for I € {1,...n}"+1,

Grn: M = G

by
drn(ma, ..., mpy1) = fi; (Mry1),
if I = (s;,1;) for some j, and
¢I,"(m1: v amT'+1) =]-7
otherwise. It follows that the value of @ on the sequence (my, ..., my) is t(mq - - -my,).

Since ¢ is injective, this shows G (r + 1)-simulates M, completing the proof of
Theorem 5.0

Theorem 5, and, especially, its application to boolean circuits, which we give
in the next section, is due to Barrington [4], who rediscovered the principle of
the Maurer-Rhodes theorem.

We don’t really need a simple group larger than M—an only slightly more
complicated argument shows that if G is any simple non-abelian group, then M
is k-simulated by a direct product of copies of G, and that every regular language
is k-recognized by G. It follows that the same is true for any finite monoid that
contains a nonsolvable group, since any such monoid will have a finite simple
non-abelian group as a divisor. Contrast this with Theorem 2, which implies
severe restrictions of the 1-simulation power of finite groups.

It is widely conjectured that the nonsolvability is essential to this special
computing power.

Conjecture 7. If a finite monoid M is k-simulated by a solvable group G, then
M s itself a solvable group, and every prime divisor of |M| divides |G|.

A finite monoid in which every group is solvable is called a solvable monoid.

Conjecture 8. If a finite monoid M is k-simulated by o finite solvable monoid
N, then M is solvable, and every prime divisor of the cardinality of a group in
M divides the cardinality of some group in N.

In the next section we shall see that these conjectures arise naturally from
problems in the complexity theory of boolean circuits.

A pseudovariety of finite monoids is a class of finite monoids closed under
division and finite direct products. We will say that a pseudovariety V of finite
monoids is a k-program variety if any finite monoid that can be k-simulated,
for some k, by a member of V is itself a member of V. Theorem 5 says that
if a k-program variety contains a nonsolvable group, then it contains all finite
monoids. The two conjectures above say that G, the pseudovariety of finite
solvable groups, and My, the pseudovariety of finite solvable monoids, are k-
program varieties.

The following theorem lists some proper subvarieties of the pseudovariety
of all finite monoids that are known to be k-program varieties. Parts (a)-(c)
follow from results in circuit complexity—we shall say something about their
proofs in the next section. Part (d) is, in essence, due to Maciel, Péladeau and
Thérien [13], and, independently, to Straubing [20]. Part (e) follows from results
of Barrington, Straubing and Thérien [6].

Theorem 9. The following are k-program varieties.

(a) The pseudovariety Ap of finite aperiodic monoids.

(b) The pseudovariety G, of p-groups, for a fized prime p.

(¢) The pseudovariety M, of monoids all of whose groups are in Gp, for a
fixed prime p.

(d) The pseudovariety J of finite J -trivial monoids.

(e) The pseudovariety G of finite nilpotent groups.

5 Circuit Complexity

A circuit with n inputs is a directed acyclic graph with 2n + 2 source nodes and
a single sink node. The source nodes are labeled by the symbols
TlyeeesTpyTlyene3Zn,0,1

and each non-source node v is labeled by a symmetric function F, : {0,1}* —
{0,1}, where k is the in-degree of the node. In all of the examples we consider,
F,, will be one of the following functions:

AND(z1,...,2p) =11 = =21, =1

OR(.Z‘l,...,xk)ZO@g;l:---:xkzo
MODq(.’L‘l,...,.’L‘k):1@q|$1+...+$k

A circuit C with n inputs determines a function f¢ : {0,1}"™ — {0,1}, which
we define as follows: Given (ai,...,a,) € {0,1}", we associate a bit to each
of the nodes of the circuit, by induction on the distance from the node to a
source. The source node labeled z; is assigned the value a;, the source node
labeled Z; is assigned the value 1 — a;, and the source nodes labeled 0 and 1
are assigned the values 0 and 1, respectively. If v is a node whose predecessors
v1,...,V; have already been assigned values by, ..., bg, then v is assigned the
value F,(by,...,b;). We set fe(ai,...,a,) to be the value assigned to the sink
node. These values are well-defined because the underlying graph of the circuit
is acyclic.

The size of a circuit is the number of edges it contains, and the depth of a
circuit is the length of the longest path from the sink to a source. Ordinarily one
looks at families of circuits {Cp}n>0, where C,, has n inputs, and considers the
language

L= {’U) € {07 1}* : fC\w|(w) = 1}
recognized by the family. (Observe that circuits with 0 inputs make perfect
sense.) Occasionally will we talk of circuits with more than one sink; such a
circuit computes a function from {0,1}" to {0,1}™, where m is the number of
sinks.

Circuits, especially those in which the node functions are AND and OR, are
a commonly studied model in computational complexity theory. One measure
of the complexity of a language is the size, or depth, or some combination of
these, of the smallest family of circuits required to recognize it. Now obviously,
any language L C {0,1}* can be recognized by a family of circuits of depth 2
provided we allow the n'" circuit of the family to have |[LN{0,1}"*| AND nodes,
and a single OR node at the sink. This requires, in general, that the size of
the nt" circuit in the family grows exponentially in n. It is more interesting to
consider what happens when we place a reasonable restriction on the circuit size.
We define AC? to be the class of languages recognized by a constant-depth family
of circuits with AN D-nodes and OR-nodes, in which the size of the nt" circuit is
bounded above by a polynomial in n. With such a family of circuits one can, for
example, compare two integers given in binary notation, or, if we allow multiple
outputs, add two numbers in binary. It is not at all clear at first if we can perform
more complicated computations such as binary multiplication, or determining
whether the number of bits in the input is even. One of the most important
achievements of computational complexity theory is the following result, due to
Furst, Saxe and Sipser [11] and, independently, to Ajtai [1].

Theorem 10. Let ¢ > 1. MOD, ¢ AC°.

This implies, by a relatively simple reduction, that multiplication cannot be
performed by polynomial-size constant-depth circuit families. (See [11].)

The connection to finite monoids is given by the following theorem, due to
Barrington and Thérien [7].

Theorem 11. Let L C {0,1}*. L € AC° if and only if L is recognized by a
k-program over a finite aperiodic monoid.

Proof. Let L € AC°. Then L is recognized by a family of depth d circuits whose
size is bounded by n” for some constants d and r. We show by induction on
d that there is a finite monoid My such that L is k-recognized by My, where
k depends on d and r. If d = 0, then L N {0,1}" is one of the sets {0,1}", 0,
{a1---an :a; =1}, or {a1---an : a; = 0}. In all four cases, L is recognized by a
1-program over the monoid U; = {0, 1}, with accepting set {0}. In the first case,
we just have all the program maps output the value 0 regardless of the input; in
the second they all output the value 1. In the third case, all the program maps
except the it? give the value 1 on all inputs; the it» map gives the value 0 on 1
and 1 on 0. In the fourth case, we just reverse these two values.

Now suppose d > 0 and that the claim is true for all smaller depths. We
assume that the sink node is labeled AN D; the proof is analogous if the sink
node is OR. So

LNn{0,1}"=LiN--- Ly,

where ¢t < n", and each L; is recognized by a subcircuit of size no more than n”
and depth less than d — 1. Thus each L; is recognized by a k(d — 1, r)-program
over an aperiodic monoid My_;, with accepting set Xj.

M, can be viewed as a monoid of right transformations on the set M;. We em-
bed this transformation monoid in the larger transformation monoid My formed
by adjoining all the constant transformations on the set My. The underlying
monoid of My is still aperiodic. We now extend this to the wreath product
U, o My, which is still aperiodic, because the aperiodic monoids are closed under
wreath product. Recall that the elements of the wreath product have the form
(y,m), where m is a transformation in My, and ~ is a map from My to U;. We
recognize LN {0, 1}™ by a program over this wreath product, in effect by running
the programs for the L; in succession, and using the constant transformations
to reset M, after each of these runs. More precisely, let {q&(lf)n} be the program
maps for L;. If I # (n,...,n), then we define

g)n(ala .. '7ak) = (a,¢§i’)n(a1, s 7ak))7

where a(m) =1 for all m € My. If I = (n,...,n), then we define

O (a1, - ar) = (0, ¢ (ar, -, ax)) - (B, 1),

where B(m) =1 if m € X; and 8(m) = 0, otherwise; and where ¢; : My — My
is the constant map to 1 € My. We now have w € L if and only if

t

(17 1) ' H H wf—’)(wz) S {1} X M.

i=11€{1,...,n}*

Since ¢ < n" we can convert this, as in the proof of Theorem 5, to a sequence
of (k(d —1,7) + r 4+ 1)-program maps over the underlying monoid of U; o M.

Observe that we may have a different set of accepting values for different input
lengths, depending upon whether the sink node is labeled AND or OR, but we
can, as described in the note in Section 3, change this into a program over a
direct product of copies of U; o My, with a single set of accepting nodes.

We now prove the converse. First consider a language L over an arbitrary
finite alphabet A. We can encode each element of A by a string of [log, |A|]
bits, and thus produce a new language L' over {0,1}. We first claim that if L
is a regular language recognized, in the sense of Section 1, by a finite aperi-
odic monoid M, then L' € AC°. To do this, we apply the classic theorem of
Schiitzenberger [16], which characterizes the regular aperiodic languages: L is
obtained from the language A* by repeated application of boolean operations
and the concatenation operation

(L1, Ly) = LiaLs,

where a € A. Observe that

n
ay---an € Lialy, & \/[(al---ai,1 € L) A(a; = a) A(aiq1---an € Ly)].

i=1

We can thus use the construction of L from these basic operations as the
blueprint for the construction of a circuit that recognizes the strings of length
n in I'. The circuit contains OR nodes of in-degree 2 for the union operation,
and NOT nodes for complementation. Note, however, that we can eliminate the
NOT nodes by moving them to the level of the inputs, using DeMorgan’s laws.
Each operation used to construct L introduces at most two new levels of nodes
into the circuit, and thus the depth of the circuit is bounded above by a constant
that depends on L. Since the in-degree of each node introduced is at most n, the
size of the resulting circuit is O(n?), where d is the depth.

Now suppose that L C {0,1}* is recognized by a k-program & over a finite
aperiodic monoid M, with accepting set X C M. Let Ap; be an alphabet in
one-to-one correspondence with M, as in the proof of Theorem 2. The set

K={an, -am, € Ayy:my---m, € X}

is an aperiodic regular language over the alphabet Ajs, hence the language K’
obtained by replacing elements of Ajs by their binary encodings, is in AC°. Now
consider an circuit with n inputs and 2 - [log, |M|] - n* outputs, which on input
w € {0,1}" gives the encoded values of ag, (,,), where I ranges over the elements
of {1,...,n}*, and where ¢ are the program maps, as well as the negations of
these binary strings. This circuit has depth 2, and consists of 2*(}) AND nodes
of in-degree k, fed into 2- [log, |M|]-n* OR nodes of in-degree O(nli“) We connect
the outputs of this circuit to the inputs of a circuit that recognizes the strings
in K’ of length [log, |[M|] - n* to obtain a circuit for L N {0,1}". This shows
L € AC® and completes the proof of Theorem 11 O

Theorem 10 and Theorem 11 combine to prove Theorem 9(a), that the pseu-
dovaritety Ap of finite aperiodic monoids is a k-program variety. For suppose
that M is k-simulated by a finite aperiodic monoid N. If M is not aperiodic, it
contains a cyclic group G of cardinality ¢ > 1. If we identify 1 with the gener-
ator of G and 0 with the identity of G, we obtain, by Theorem 11, a family of
k-programs over N recognizing M OD,, which contradicts Theorem 10.

We also obtain a theorem analogous to Theorem 3 on the regular languages
k-recognized by aperiodic monoids; these are the same as the regular languages
1-recognized by aperiodic monoids; the proof of this is the same as that of The-
orem 3.

It is worth emphasizing that Theorem 9(a), a purely algebraic statement,
is proved by appeal to a result from circuit complexity. No purely algebraic-
combinatorial argument, along the lines of the proof of Theorem 2, is known.
Such a proof would give a new proof of the circuit lower bound Theorem 10, for
if we had an ACP circuit family recognizing M OD, for some g > 0, then could
easily use Theorem 11 to construct a k-program over an aperiodic monoid that k-
simulates the cyclic group of cardinality ¢. Thus it is of more than passing interest
to prove Theorem 9(a) directly, since this would introduce a new technique for
proving lower bounds for circuits.

The language M OD,, while not in AC?, can easily be recognized by logarithmic-
depth circuit families of AN D nodes and OR nodes, even if we require each node
to have in-degree 2. (We will prove this below, when we show that the multiplica-
tion in any finite monoid can be simulated in this fashion; here we are simulating
the multiplication in the group of order 2.) In general, we define NC! to be the
class of languages recognized by families of circuits where each node is labeled
either AND or OR, and has in-degree 2, and where there exists a constant ¢
such that the circuit for inputs of length n has depth no more than c - log, n.
Note that the size of such a circuit is necessarily bounded by a polynomial in
n. With NC? circuit families we can perform binary multiplication (if we al-
low multiple outputs), determine if the majority of the bits in the input are on,
and even perform binary division. (See Chandra, Stockmeyer and Vishkin [9],
and Beame, Cooke and Hoover[8].) As it turns out, NC! is exactly the class of
k-recognizable languages. This is the content of the following theorem, due to
Barrington [4].

Theorem 12. Let L C {0,1}*. The following are equivalent:
(a) L € NC!.
(b) L is k-recognized by every finite simple nonabelian group.
(¢) L is k-recognized by some finite monoid M.

Proof. ((a) = (b)) Let G be a finite simple nonabelian group, and choose dis-
tinct elements ¢(0),¢(1) of G. We claim that there is a polynomial w over G
with n variables such that for all zy,...,z, € {0,1}, w(e(z1),...,t(zy)) is 1 if
Z1...2, € L, and 0 otherwise; and that the length of w is bounded by r - n¥
for some constants r and k. This follows by induction on the depth of the cir-
cuit recognizing L N {0,1}" : If the depth is 0, then we take for our polynomial

either the constant +(0), the constant ¢(1), «(x;), or a polynomial v in one vari-
able satisfying v(i(z)) = ¢(1 — z) for z € {0,1}. Such a polynomial exists by
Lemma 6. Thus for d = 0 the length of the polynomial is bounded by a constant
K. Now consider a circuit of depth d. The sink node is labeled AND or OR. By
Lemma 6, there is a polynomial v, over G in two variables realizing the AND
function of two variables, in the sense that

va(t(z1),t(z2)) = L(AND(z1,22)).

Similarly, there is a polynomial vy realizing the OR function of two variables. By
induction, the two subcircuits of depth d— 1 whose outputs are inputs to the sink
are realized by polynomials w' and w" in n variables. We obtain a polynomial
realizing the whole circuit by substituting w' and w" for the two variables in v
or vy. The resulting polynomial has length no more than

max(|val, [vv|) - max(|w'], [w").

It follows from the induction hypothesis that this is no more than

K - max(|ual, lov])? < max(joal, joy)82 <7 - nf,

for some constants r and k. We now argue as in the proof of Theorem 5 that L
is k'-recognized by G for some G.

((b) = (c)) is trivial.

((¢) = (a)) Let Ap be an alphabet in one-to-one correspondence with M,
as in the proof of Theorem 2, and let m € M. Let X C M, and consider the
language

T={am, " am, € Ayy:my---m, € X},

as well as the language T' obtained from T by encoding each element of Axs
by a string of u = [log, |M|] bits. The product of two elements of M is then
represented by a function from {0,1}?* into {0,1}%, and this function can be
represented by a fixed circuit of AND and OR nodes of in-degree 2 and NOT
nodes of in-degree 1. Let d be the depth of this circuit. It follows that the product
of n elements of M is realized by a circuit of AND and OR nodes of in-degree
2 having depth d - (1 + log, n), since we can move any NOT nodes to the level
of the inputs. We attach to the outputs of this circuit a circuit of fixed size
computing the function from {0,1}* into {0,1} that determines if a bit string
is an encoding of an element of X. This shows 7" € NC'. We now argue as in
the proof of Theorem 11, that if L is k-recognized by a M, then L is recognized
by a circuit whose first two levels consist of AN D nodes of constant in-degree
followed by O(n*) OR nodes of in-degree O(n*), and whose subsequent levels
are the circuit for 7" that we have just constructed. Since we can simulate an
OR node of in-degree O(n*) by a tree of OR nodes of in-degree 2 and depth
k - [log, n], we obtain L € NC', completing the proof. O

Let us return to circuit families in which there is no bound on the in-degrees
of the nodes, and in which the depth of the circuits in the family is constant. We
will now allow these circuits to contain nodes that compute the M OD, function,
for a value of ¢ fixed throughout the circuit family. We distinguish two ways in
which this can be done. L C {0, 1}* is said to be in CC(q) if it is recognized by a
polynomial-size constant-depth family of circuits in which every node is labeled
by MODg; L is said to be in ACC(q) if it is recognized by such a circuit family
in which every node is labeled either MOD,, AND or OR.

We state the following two theorems without proof. They are due to Smolen-
sky [17].

Theorem 13. If p is prime and k > 1, then AND ¢ CC(p).
Theorem 14. If p,q are distinct primes and k > 1, then MOD, ¢ ACC(p*).

There are analogous conjectures for the case where the modulus of the circuit
nodes is not a prime power.

Conjecture 15. If ¢ > 1 then AND ¢ CC(q). If p is a prime that does not
divide q then then MOD, ¢ CC(q).

Conjecture 16. If ¢ > 1 and p is a prime that does not divide g, then MOD,, ¢
ACC(q).

These are among the most outstanding unsolved problems in circuit com-
plexity.

Now let us indicate the connections to algebra. The following theorems can
be considered modular analogues of Theorem 11. Their proofs, which we omit,
are similar. (See Barrington and Thérien [7] and Straubing [18].)

Theorem 17. Letq > 2, L C {0,1}*. L € CC(q) if and only if L is k-recognized
by a solvable group whose cardinality divides a power of q.

Theorem 18. Let ¢ > 1, L C {0,1}*. L € ACC(q) if and only if L is k-
recognized by a solvable monoid in which every group has cardinality dividing a

power of q.

We conclude this section by showing the equivalence between the theorems

and conjectures stated above, and the results and problems cited at the end of
Section 3.
Proof of Theorem 9(b). Suppose the finite monoid M is k-simulated by a p-group
G. M must then be a group, because otherwise M contains an isomorphic copy
of Uy, and thus AND is k-recognized by G. But since every p-group is solvable,
this implies AND € CC(p), by Theorem 17, thus contradicting Theorem 13.
|M| cannot be divisible by a prime ¢ different from p, because otherwise M
would contain a cyclic group of order ¢, and MOD, would be k-recognized by
G, which implies MOD, € CC(p), again contradicting Theorem 13. Thus M is
a p-group. O

Proof of Theorem 9(c). The argument is the same as the preceding; we do not
need the observation about AND. O

Let P be a set of primes, and let G, p denote the pseudovariety consisting of
all finite groups G such that every prime divisor of |G| belongs to P. Let Mo, p
denote the pseudovariety of finite monoids whose groups are all in G, p.

Theorem 19. The following are equivalent.
(a) Conjecture 15.
(b) For every set P of primes, Gso,p s a k-program variety.

Proof. Assume Conjecture 15. Suppose M is k-simulated by G € Ggo,p. As in
the proof of Theorem 9(b), we conclude M must be a group, and every prime
dividing the cardinality of M must be in P. M must also be a solvable group,
because if it were not, M could simulate the multiplication in a finite simple non-
abelian group G, and thus by Theorem 12, k-recognize all languages in NC*, in
particular AN D, contradicting the conjecture. Thus M € G, p. Conversely,
suppose that for every P, G, p is a k-program variety. If AND € CC(q) for
some ¢, then by Theorem 17 AND is k-recognized by a solvable group whose
cardinality divides a power of ¢, and thus U; can be k-simulated by this group.
This implies that G, p, where P is the set of prime divisors of g, is not a k-
program variety, contradicting the assumption. We get the same contradiction
if we suppose MOD,, € CC(q) for some prime p that does not divide q.

Theorem 20. The following are equivalent.
(a) Conjecture 16.
(b) For every set P of primes, My, p is a k-program variety.

Proof. The proof is identical to the foregoing proof except that we do not need
to reason about k-recognition of AND in either direction. O

6 (log® n)-simulation

In a k-program each instruction has access to only a fixed number of letters
of the input string. If we allow the number of letters to which an instruction
has access to grow with the input length, we might increase the power of the
program. Of course, if we allow each instruction to access all n letters of the
input, then we can simulate any monoid M by any monoid N that is as large
as M—there will be no connection between the algebraic structure of M and
N. However if the number of letters accessed grows slowly with M, then we find
some interesting results.

Here we will look at the situation in which each instruction of the program
for inputs of length n depends on c- logk n letters of the input string, for some
constants ¢ and k. If f : N — N is a function, then we define an f(n)-program
over a monoid M exactly as we did in the case when f is constant: The program
maps for inputs of length n are indexed by the f(n)-tuples over {1,...,n}.
The results we describe originate in work of Toda [21] on the polynomial-time

hierarchy. Their interpretation in terms of circuits is due to Allender [2] and
Allender and Hertrampf [3]. The semigroup-theoretic interpretation that we give
here has not been published before.

First, let us look briefly at the question of ¢ - log*n-programs over aperiodic
monoids. If a finite monoid M is ¢-log" n-simulated by a finite aperiodic monoid
N, then by making a suitable translation between Ajs and the binary alphabet
{0,1}, we can simulate multiplication in M by a constant-depth circuit family
where the size of the nt? circuit is n©(1°8" ") —this is proved exactly like one direc-
tion of Theorem 11. Now results of Hastad [12] and Yao [22] extend Theorem 10
to the case of circuit families of this size; they prove that any constant-depth
circuit family of AND nodes and OR nodes that recognizes M OD, must have
size exponential in n. Thus we conclude in this case as well that M must itself
be aperiodic. Hastad also shows that for every d > 0 there is a language L recog-
nized by a polynomial-size family of circuits of depth d+ 1 such that any circuit
family of depth d recognizing L has exponential size. This implies (by suitably
adapting the proof of Theorem 11) that there is no finite aperiodic monoid N
such that every finite aperiodic monoid M is logk n-simulated by N, or by a
direct product of copies of N.

It is a remarkable fact, then, that every finite aperiodic monoid can be
O(logk n)-simulated by a direct product of copies of the monoid U; o U o G,
where G5 is the cyclic group of order 2. We will prove this with circuits. We
first define a probabilistic circuit with n inputs to be an ordinary circuit with
n + m inputs, for some m > 0. However we partition the inputs into two
sets: The first n inputs, denoted z1,...,%,, are called ordinary inputs, and
the remaining m inputs, denoted y1,...,yn, are called probabilistic inputs.
Let f : {0,1}™*" — {0,1} be the function computed by this circuit, and let
9 :{0,1}™ — {0,1} be a function. Let € > 0. We say that the circuit computes
g with error at most € if for all (z,...,z,) € {0,1}",

|{(y177yM) :f(mla"'amnayla'“;yM) #g(177n)}| < 2Me.

That is, we think of the probabilistic inputs as fair coins which we flip at the start
of the computation; the probability that the circuit makes an error in computing
g is at most €. We also say that the circuit computes g with probability at least
1—e

The following sequence of lemmas is adapted from [3].

Lemma21. Let s > 0. Both the OR and the AND function of n variables can
be computed by probabilistic circuits of depth 2, with error less than 275. The
circuits consist of no more than (n - (s +1))2*t1 AND nodes on the first level,
each of in-degree no more than 2s, and a single MODy gate at the output level.

Proof. We first construct a circuit with n ordinary inputs 1, ..., z, and n prob-
abilistic inputs y1, . . ., yn. The circuit consists of n AN D nodes, each of in-degree
2 computing the values x; A y;. The outputs of these nodes are fed into a single
MOD; node. If OR(z1,...,x,) =0, then all the x; are 0, and the output of the
circuit is 1. If OR(x1,...,2,) = 1, then let z;,,...,z; be the ordinary inputs

equal to 1. Note that r > 0. The circuit outputs 0 if and only if an odd number
of yi,,...,y; are equal to 1, which occurs with probability % Thus this circuit
computes the negation of the OR function with probability at least %

We now form the AND of s copies of this probabilistic circuit, with a new
set of probabilistic inputs for each copy—that is, the resulting circuit has ns
probabilistic inputs. If OR(x1,...,%,) = 0, then all s subcircuits output 1, so
the circuit outputs 1. If OR(x1, . ..,%,) = 1 then each subcircuit outputs 1 with
probability %, so the whole circuit outputs 1 with probability 27%. Thus this
probabilistic circuit computes the negation of the OR function with error no
more than 27%.

We now represent the behavior of this circuit by a polynomial in the n-(s+1)
input variables over the field Z,. Each 2-input AN D node computes a polynomial
x;Yij, where 1 < i <n and 1 < j <t Each MOD, node outputs the value of

the polynomial
n
i=1

and thus the whole circuit outputs the product of these s polynomials. The
result is a polynomial of degree 2s. We can write this polynomial as a sum of
monomials, each of degree no more than 2s. (Observe that since Z, satisfies the
identities 22 = z and z+2z = 0, no variable need ever appear more than once in a
monomial, and no monomial need ever appear more than once in a polynomial.)
The number of distinct monomials of degree t is therefore ("'(st“)) = O(nt),
and therefore the number of distinct monomials of degree no more than 2s is
O(n?**t1). If we replace each ordinary input z; by 1 + z; then we obtain a
polynomial of the same degree that gives the value of AND(xy,...,z,) with
error probability no more than 27%. If we replace the polynomial P by 1+ P we
obtain a polynomial of the same degree that gives the value of OR(z1,...,2,)
with error probability 27°. We can convert the polynomial back into a circuit
in which each monomial of degree d is represented by the AND of d inputs;
the outputs of these AN D nodes are fed, together with a constant input 1, into
a single MOD- gate, to compute the MODy sum. (It may be that we have
a monomial of degree 0, which will cancel the constant input, so the resulting
circuit may or may not have a constant 1 at the input level.) O

Lemma22. Letr,d,k > 0. There exists ¢ > 0 depending on r,d and k such that
any family of circuits of constant depth d and size n* with AND and OR nodes
can be simulated by a family of probabilistic circuits with the following properties:
FEach circuit has depth 2, and consists of a single MOD,y node whose inputs are
the outputs of AND nodes; the in-degree of the MODsy node is n©°8" ™ ; the
in-degree of each AND node is O(log?n); and the error probability is no more
than n— 108",

Proof. Given a circuit in the family of size n*, we apply Lemma, 21 to simulate
each OR and AN D node by a probabilistic circuit with error probability no more
than 27%. The resulting probabilistic circuit has n**!s probabilistic inputs, and

has error probability no more than n¥27%. We want to choose s so that
nk2—s < nlogrn.

It suffices to choose s > log’chl n + log" n. In particular, we can set p to be
the larger of k + 1 and r, so that each AND node in the resulting probabilistic
cirﬁuit hiams in-degree O(log? n), and each M OD5 node has in-degree O(n?**1) =
TLO logP n .

We will now again apply the trick of representing the behavior of this prob-
abilistic circuit by a polynomial over Z, and manipulating the polynomial. Sup-
pose we have an AND of m; MOD, nodes, where each MOD; node has ms
inputs, given by polynomials over Z,. Let p;; be the polynomial giving the ;"
input to the t* MOD, node. We can then represent the output of the AND
node by the polynomial

m1 me
H(l + Zpij).
i=1 j=1

This can be rewritten as the sum of m3'' terms, each of which is a product
of my of the p;;. When we represent the resulting polynomial by a circuit, we
obtain a MOD, node of in-degree m5'*, where each input is the output of an
AND node of in-degree m;. (We may have to add a constant input 1 to the
MOD, node.) We apply this repeatedly to the probabilistic circuit we have
constructed, switching AN D nodes and M OD5, nodes, until we obtain a circuit
that consists of a tree of d levels of M O D3 nodes, each with in-degree nOlog™" n)
at the outputs, and trees of d levels of AN D nodes, each of in-degree O(log? n),
at the inputs. We can collapse each tree of AND nodes to a single AN D node
of in-degree O(logP% n), and collapse the tree of MODs, nodes to a single MOD,
node of in-degree n®Uog** n) O

Remarkably, we can change the probabilistic circuit into an equivalent deter-
ministic circuit by adding a single level of AN D nodes followed by a single OR
node.

Lemma 23. Let d,k > 0. There exists ¢ > 0 depending on r and d such that
any family of circuits of constant depth d and size n* with AND and OR nodes
can be simulated by o family of circuits of depth 4 having the following structure:
The output node is an OR node of in-degree n; each input to the output node is
an AND node of in-degree n; each input to these AND nodes is a MODs node
of in-degree n©1°8" ™) eqch input to a MODy node is an AND of O(log?n)
mputs.

Proof. Call the circuit that we are trying to simulate C. Let us take the prob-
abilistic circuit constructed in the proof of Lemma 22 to simulate C, with error
probability no more than n=3, and form the AND of n copies of the circuit,
with a separate set of probabilistic inputs for each copy. We call this probabilis-
tic circuit D. Let us now take the OR of n copies of D, again with a separate
set of probabilistic inputs for each copy. Call this probabilistic circuit &£. If C

3 2

outputs 1 then D outputs 1 with error probability no more than n-n=° =n=2,
and 0 with error probability no more than n=3". What is the probability of error
of £7 If C outputs 1, then £ fails only if all the copies of D fail, which occurs
with probability no more than n=2". If C outputs 0, then & fails if one of the n
copies of D fails, which occurs with probability no more than n - n=3" = nl =37,
In either case, the error probability is less than 27", as long as n > 2. (The
trivial case n = 1 can be handled separately.) Since the error probability is less
than 27", there must be some setting of the ¢ probabilistic inputs that gives
the correct answer on all 2" settings of the ordinary inputs. (Suppose to the
contrary that for each setting of the probabilistic inputs, there is a setting of the
ordinary inputs that gives the wrong answer. Then the number of settings of the
whole set of inputs leading to an error is at least 2¢; but the assumption about
the error probability implies that for each setting of the ordinary inputs there
are fewer than 2¢~" settings of the probabilistic inputs that give rise to an error,
and thus the total number of settings giving rise to an error is strictly less than
2t a contradiction.) Thus we can hard-wire these settings of the probabilistic
inputs into the circuit, and obtain the desired result. O

We are now ready to prove the main result of this section. The construction is
similar to the argument given in the proof of Theorem 11. Recall that the wreath
product is an associative operation on transformation monoids. When we write a
monoid M as a factor in a wreath product, we mean the transformation monoid
whose underlying set of states is M, with the natural right action of M on
itself. Recall as well that U; denotes the transformation monoid U; with the two
constant transformations adjoined. Let M be a finite aperiodic monoid. For each
m € M we define the language

Lm:{aml"'amr GA*M:ml"'mr:m}.

As in the proof of Theorem 11, we form the language L] over {0,1}, and argue
that this language is in AC?. It follows from Lemma 23 that L! is recognized by
a circuit £ of the kind described in the statement of that lemma. We claim that
L' is O(log? n)-recognized by Uy o Uy 0 G2, where G denotes the cyclic group of
order 2. To compute the output of a single M OD, node in the circuit, we note
that each input to this node is an AN D node whose value depends on O(log? n)
input bits. We can thus compute the value of the M OD, node by a sequence of
O(log? n)-program maps with values in G2. At the end of the sequence we feed
this value (1 or 0) to the U; co-ordinate of the wreath product. We now repeat
the same sequence of program maps (without the last instruction that feeds the
computed value to the middle co-ordinate); this has the effect of resetting the G
co-ordinate to the identity. We repeat this procedure with all the M OD> nodes
attached to a single AN D node. Once this is completed, the state of the middle
co-ordinate is the value of the AN D node, and the state of the right co-ordinate
is the identity of G2. We now feed 1 to the left co-ordinate if the state of the
middle co-ordinate is 0, and O if the state of the middle co-ordinate is 1. We
then reset the state of the middle co-ordinate to the identity, using the constant
transformations. We repeat this for each of the n AN D gates at the third level of

the circuit. At the conclusion, the state of the leftmost co-ordinate of the wreath
product will be 0 if the output of £ is 1, and 1 if the output of £ is 0. Each
instruction has accessed a c - log? n-tuple of input bits, and each input bit has
been accessed n? times, so we can recognize L), with a (c-log? n + 2)-program
over this wreath product.

To simulate M, we run the | M| programs recognizing the L! in parallel, and
thus we can simulate M with a direct product of |M| copies of Uy o Uy o Go.

The argument above proves:

Theorem 24. Let L € AC°. There exists a constant ¢ > 0 such that L is
O(log? n)-recognized by Uy o Uy o Gy. Let M be any finite aperiodic monoid.
There exists a constant ¢ > 0 such that M is O(log? n)-simulated by a direct
product of copies of Uy o Uy o Gs.

It is relatively easy to generalize this result to circuits in which several dif-
ferent prime moduli appear. We state the following theorem without proof.

Theorem 25. Let P be a nonempty set of primes. Let M € My, p. Then there
exist a constant ¢ > 0, and a group G € Gyo,p such that M is O(log?n)-
simulated by a direct product of |M| copies of Uy o Uy o G.

It would be interesting to find proofs of these theorems that do not require
probabilistic arguments. Observe that in the proof of Lemma 23 we could have
just as well taken the AND of OR’s of copies of our probabilistic circuit as
the OR of AND’s. This leads one to suspect that Theorems 24 and 25 hold
with something even simpler than U; o U, as the left-hand factor in the wreath
product. We venture the following guess:

Conjecture 26. Let P be a nonempty set of primes. Let M € Mgy p. Then
there exist a constant ¢ > 0, a group G € Gy, p, and an R-trivial monoid R
such that M is O(log? n)-simulated by R o G.

7 References

References

1. M. Ajtai, “X1 formulae on finite structures”, Annals of Pure and Applied Logic 24
(1983) 1-48.

2. E. Allender, “A note on the power of threshold circuits”, Proc. 30th IEEE FOCS
(1989) 580-584.

3. E. Allender and U. Hertrampf, “Depth reduction for circuits of unbounded fan-in”,
Information and Computation 112 (1994) 217-238.

4. D. Mix Barrington, “Bounded-Width Polynomial-Size Branching Programs Rec-
ognize Exactly Those Languages in NC'”, J. Comp. Syst. Sci. 38 (1989) 150-164.

5. D. Mix Barrington and H. Straubing, “Superlinear Lower Bounds for Bounded-
Width Branching Programs”, J. Comp. Syst. Sci. 50 (1995) 374-381.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

. D. Mix Barrington, H. Straubing, and D. Thérien, “Nonuniform Automata over

Groups”, Information and Computation 89 (1990) 109-132.

D. Mix Barrington and D. Thérien, “Finite Monoids and the Fine Structure of
NCY”, JACM 35 (1988) 941-952.

P. Beame, S. Cook, and J. Hoover, “Log-Depth Circuits for Division and Related
Problems” SIAM J. Computing 15 (1986) 994-1003.

A. Chandra, L. Stockmeyer, and U. Vishkin, “Constant-Depth Reducibility”,
SIAM J. Computing 13 (1984) 423-439.

Samuel Eilenberg, Automata, Languages and Machines, vol. B, Academic Press,
New York, 1976.

M. Furst, J. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial Time
Hierarchy”, J. Math Systems Theory 17 (1984) 13-27.

J. Hastad, “Almost Optimal Lower Bounds for Small-Depth Circuits”, Proc. 18th
ACM STOC (1986) 6-20.

A. Maciel, P. Péladeau and D. Thérien, “Programs over Semigroups of Dot-depth
One”, preprint, 1996.

W. Maurer and J. Rhodes, “A Property of Finite Simple Non-Abelian Groups”,
Proc. Amer. Math. Soc. 16 (1965) 552-554.

J. E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

M. P. Schiitzenberger, “On Finite Monoids Having Only Trivial Subgroups”, In-
formation and Control 8 (1965) 190-194.

R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”, Proc. 19th ACM STOC (1987) 77-82.

H. Straubing, “Constant-depth Periodic Circuits”, International J. Algebra and
Computation 1 (1991) 49-88.

H. Straubing, Finite Automata, Formal Languages, and Circuit Complezity,
Birkh&user, Boston, 1994.

“Languages Defined with Modular Counting Quantifiers”, Proc. 15th STACS, Lec-
ture Notes in Computer Science 1373, Springer, Berlin (1998) 332-343.

S. Toda, “PP is as hard as the polynomial-time hierarchy”, SIAM J. Computing
20 (1991), 865-877.

A. Yao, “Separating the Polynomial Time Hierarchy by Oracles”, Proc. 26th IEEE
FOCS (1985) 1-10.

