Regular Languages Defined by Generalized
First-Order Formulas with a Bounded Number
of Bound Variables

Howard Straubing! and Denis Thérien?

! Computer Science Department, Boston College
Chestnut Hill, Massachusetts, USA 02467
2 School of Computer Science, McGill University
Montréal, Québec
Canada H3A2A7

Abstract. We consider generalized first-order sentences over < using
both ordinary and modular quantifiers. It is known that the languages
definable by such sentences are exactly the regular languages whose syn-
tactic monoids contain only solvable groups. We show that any sentence
in this logic is equivalent to one using three variables only, and we prove
that the languages expressible with two variables are those whose syn-
tactic monoids belong to a particular pseudovariety of finite monoids,
namely the wreath product of the pseudovariety DA (which corresponds
to the languages definable by ordinary first-order two-variable sentences)
with the pseudovariety of finite solvable groups. This generalizes ear-
lier work of Thérien and Wilke on the expressive power of two-variable
formulas in which only ordinary quantifiers are present. If all modular
quantifiers in the sentence are of the same prime modulus, this provides
an algorithm to decide if a regular language has such a two-variable
definition.

1 Introduction

1.1 Automata and logic

One finds in the theory of finite automata a meeting ground between algebra and
logic, where difficult questions about expressibility can be classified, and very
often effectively decided, by appeal to the theory of semigroups. This line of
research began with the work of McNaughton and Papert [9], who showed that
the regular languages definable by first-order sentences over ‘<’ are precisely
the ‘star-free’ regular languages, and thus, by a theorem of Schiitzenberger, the
languages whose syntactic monoids are aperiodic-that is, contain no nontrivial
groups. Let us give an example of the kind of first-order formulas we are talking
about. (We will give a more formal account of our approach to logic in the
Section 3.) Consider the sentence

2y (Qoz ANQoy Az <y A—-Jz(x < 2A2<Yy)).

This formula is interpreted in words over a specified finite alphabet X' that
contains the letter o. Let us say ¥ = {o,7}. The variables in the sentence
denote positions in the word (that is, integers between 1 and the length of the
word, inclusive) and the subformula @,z means ‘the letter in position z is ¢’.
The subformula

r<yA-Jz(z<zAz<y))

says that position z is to the left of position y, and that there is no position
strictly between them (i.e., that y = x + 1); thus the whole sentence says ‘there
are two consecutive occurrences of o’. We say that the sentence defines a language
over Y, namely the set of all strings that contain the factor oo. This is the
language L given by the regular expression X*oo X*. Since X™* is the complement
of the empty language, L can be built from the empty language and the letters
of X by repeated application of boolean operations and concatenation—this is
what is meant by a “star-free” language.

The theorem of McNaughton and Papert furnishes an algorithm for determin-
ing if a given regular language is definable by such a first-order sentence, since
we can compute the multiplication table of the syntactic monoid of a regular
language from any automaton that recognizes the language, or from any regular
expression that generates it, and we can decide, once we have the multiplication
table, whether the monoid contains a nontrivial group.

Since McNaughton and Papert’s work, researchers have investigated the ex-
pressibility of regular languages in various restrictions and extensions of first-
order logic over <. For example, we can replace the predicate z < y by the
(weaker) predicate y = 2 + 1 (Beauquier and Pin [2]). We can permit the use of
modular quantifiers, that count, modulo a fixed period, the number of positions
of a string satisfying a given condition (Straubing, Thérien and Thomas [24]). We
can consider the hierarchy of families of languages parametrized by the depth
of quantifier alternation (Thomas [27]). In all the cases considered, the fam-
ily of regular languages obtained can be characterized in terms of the syntactic
monoids or the syntactic morphisms of its members, and in most cases (the quan-
tifier alternation hierarchy is a notable exception) this characterization gives rise
to an algebraic algorithm for deciding membership of a given language in the
family. The book by Straubing [21] provides a large catalogue of such results.

Kamp [8] and later, Immerman and Kozen [7] showed that every first-order
sentence over < is equivalent to such a sentence in which only three variables
are used. The number of bound variables that occur in a formula can be con-
sidered as a kind of expressibility resource, along with the kinds and depth of
the quantifiers and the set of available atomic formulas. (This plays a role in
Immerman’s treatment [6] of descriptive complexity.)

Thérien and Wilke [26] considered the regular languages defined by sentences
in which only two variables are used, and found that these, too, could be char-
acterized in algebraic terms: A language L is definable by a sentence with two
variables if and only if its syntactic monoid belongs to a particular family DA
of finite aperiodic monoids. (We will give the precise definition of DA in the
next section.) It was already known that the two-variable definable languages

are precisely those definable in the fragment of propositional temporal logic that
includes both the past and future versions of the Next and Eventually opera-
tors, but excludes the Until operator (Etessami, Vardi and Wilke [4]). Since it is
possible to determine from the multiplication table of a finite monoid whether it
belongs to DA, the Thérien-Wilke result provides an algorithm for determining
whether a given regular language is definable in this fragment of temporal logic.

In the present paper we investigate the effect of bounding the number of
bound variables in sentences that include modular quantifiers as well as ordinary
first-order quantifiers, and we characterize, again in algebraic terms, the regular
languages that are thereby defined.

1.2 A critical example

We will establish (Theorem 1 below) that for sentences with both modular and
ordinary quantifiers, the three-variable property continues to hold. Thus, by
results in [24], the three-variable definable languages are exactly those whose
syntactic monoids contain only solvable groups. The real question then is to
characterize the languages that are definable by sentences with two variables. It
is tempting to conjecture that if a language is definable by a two-variable sentence
with modular quantifiers, and if the language is star-free, then it is definable by
a two-variable sentence that uses only ordinary quantifiers. But this is false, as
the following simple (and important) example shows: Let X' = {0, 7}, and let L
be the language defined by the regular expression (o7)*. Thus w € L if and only
if w contains no occurrence of the factor oo or 77, and, if w is not the empty
string, w begins with o and ends with 7. We already saw in 1.1 how to write a
first-order sentence that says a string contains no occurrence of go or 77. We
can say that a string is empty or begins with ¢ with the sentence:

Va:(Vy(—uy < .’L‘) - Q0$)7

and we similarly say that a string is empty or ends with 7. Thus L is definable by a
first-order sentence. We could have obtained the same conclusion by constructing
the syntactic monoid of L and verifying that it contains no nontrivial groups. A
closer look a the syntactic monoid shows that the image of the word o7 under the
syntactic morphism is idempotent, but that the image of o70¢ is not idempotent.
This implies M (L) ¢ DA, so by the theorem of Thérien and Wilke cited above,
L cannot be defined by a first-order sentence with only two variables. But L
is definable by a two-variable sentence if we permit modular quantifiers: The
formula 3" m°d "24 is interpreted to mean ‘the number of positions z satisfying
¢ is congruent to r modulo n.” A string belongs to L if and only if it has even
length, and has o in all the odd-numbered positions and 7 in all the even-
numbered positions. Thus we can define L by the sentence

0mod 25 (5 = 2) AVY(Qoy & I0™ 2x(z < y)).

This example shows that the situation is more complicated, and potentially
more interesting, than what one might suppose, since the modular quantifiers

can be used to economically express properties that are not intrinsically peri-
odic (that is, that do not require modular quantifiers for their expression). This
same phenomenon is seen in some strikingly similar results in computational
complexity theory, which we will discuss at the end of the paper.

1.3 Our main results

In Section 2, we will give a quick rundown of the terminology and results that we
need from semigroup theory. In Section 3, we will give a precise account of our
logical formalism, and then prove that the three-variable property holds for for-
mulas that include modular quantifiers as well as ordinary first-order quantifiers.
That is,

Theorem 1. Let ¢ be a sentence over < containing first-order and modular
quantifiers. Then ¢ is equivalent to such a sentence with only three variables.

For formulas that contain only modular quantifiers, we have an even stronger
result:

Theorem 2. Let ¢ be a sentence over < in which only modular quantifiers ap-
pear. Then ¢ is equivalent to such a sentence with only two variables.

Our main theorem is that the languages L defined by two-variable sentences
are characterized by membership of the syntactic monoid M (L) in the pseudova-
riety DA x G, defined in Section 2:

Theorem 3. Let X be a finite alphabet. A regular language L C X* is defined by
a two-variable sentence over < containing first-order and modular quantifiers, if
and only if M(L) € DA x Gy

It is important to remark that while our main theorem permits us in many
individual cases to show that a language is, or is not, two-variable definable, the
general problem of determining membership in DA * G,,; is not known to be
decidable.

In Section 4, we will prove the ‘only if’ direction of Theorem 3, by first
establishing a normal form for two-variable formulas and then using a version of
the Ehrenfeucht-Fraissé game. In Section 5 we will describe the ideal structure
of monoids in DA * Gg,;, and then use this information in Section 6 to prove the
‘if” part of the theorem. In Section 7 we discuss extensions of the main result, as
well as several open problems, most notably the decision problem for DA * G;.

2 Background From Semigroup Theory

In this section we give a rapid rundown of the definitions and results from the
theory of semigroups that we will need. For further details, the reader should
consult the books by Eilenberg [3] and Pin [11].

Division and recognition. A semigroup is a set together with an associative mul-
tiplication. If the semigroup contains a multiplicative identity element, then we
call the semigroup a monoid, and we usually denote the identity by 1. If X' is
a finite alphabet, then X*, the set of all strings over X, is a monoid with con-
catenation of strings as the multiplication. X* is the free monoid on X: This
means that if M is any monoid and f : ¥ — M any map, then f extends to
a unique homomorphism from X* into M. (We note that a homomorphism of
monoids is required to preserve the identity as well as the multiplication—that
is, the identity element of the domain must map to the identity element of the
codomain.)

If S is a finite semigroup and s € S, then there is a unique element e among
the powers of s that is idempotent—i.e., such that e> = e. We denote this
idempotent by s“.

If M and N are monoids then we say M divides N, and write M < N, if M
is a homomorphic image of a submonoid of N. Division is a transitive relation.

If L C X*, and M is a monoid, then we say that M recognizes L if there is a

homomorphism ¢ : X* — M and a subset X of M such that L = ¢71(X). (We
also say in this instance that the homomorphism ¢ recognizes L.) L is a regular
language if and only if it is recognized by a finite monoid. For every L C X*,
there is a unique monoid M (L) and a homomorphism py : ¥* — M (L) such
that pr recognizes L, and for any homomorphism ¢ : X* — M that recognizes
L, there is a unique homomorphism 9 : ¢(X*) — M (L) such that ¥ o ¢ = uy.
(In particular, M (L) divides every monoid that recognizes L, so that L is regular
if and only if M (L) is finite.) M (L) is called the syntactic monoid, and py, the
syntactic morphism, of L.
Ideal Structure and Green’s Relations. If S is a semigroup and I is a nonempty
subset of S, then we say [is an ideal of S if SI C I and IS C I. Similarly,
we say that I is a left ideal of S if SI C I, and a right ideal if IS C I.If I is
an ideal, then the set (S — I) U {0} forms a semigroup with multiplication x
given by s; X so = s159, if s1,89,5180 € § — I, and s; X s; = 0 otherwise. We
denote this semigroup by S/I; this is the image of S under the homomorphism
that collapses all the elements of I to a single element, and leaves all the other
elements of S fixed.

If s,t € S we write s <7 t if s belongs to the ideal {t} U St U tS U StS
generated by t. If s <7t and t <7 s, then we say that s and ¢ are J-equivalent
and write s =7 t. The equivalence classes for this relation are called J-classes.
Similarly we define <., <g, =, =r, L-class, and R-class, by considering left
and right ideals in place of two-sided ideals.

A J-class is said to be regular if it contains an idempotent. The Rees Matriz
Theorem, which we now state, describes the structure of the regular J-classes
of a finite semigroup. If A, B are finite sets, G a finite group, and P: B x A —
G U {0} a map, then (A4, B,G, P) denotes the semigroup A x G x B U {0} with
multiplication given by

(aagab)(alaglabl) = (a,g) P(ba al)) glabl):

if P(b,a') # 0, and (a,g,b)(a’,g',b") = 0 otherwise. For each such J-class J
of a finite semigroup, there exist finite sets A and B, a finite group G, and a
map P : B x A — G U{0} such that the semigroup J U {0} is isomorphic to
(A, B,G, P). Under this isomorphism, the R-classes contained in J are the sets
{a} x G x B, the L-classes are the sets A x G x {b}, and every R-class contains at
least one idemptotent, as does every L-class. We call (A, B, G, P) a Rees matriz
representation of J. It is customary to depict J as a rectangular array with rows
indexed by A and columns indexed by B—the entry in row a € A and column
b € B is the subset {a} x B x {b} of (4, B,G, P).

A non-regular [J-class is called a null J-class. If J is a null 7-class of a finite
semigroup and s,t € J, then st ¢ J.
Wreath Products and Semidirect Products. A transformation monoid is a pair
X = (Q,S) where X is a set and S is a monoid of maps from @ into itself,
with functional composition as the multiplication and the identity map on X as
the identity element. We write the image of ¢ € () under s € S as gs, and we
compose maps from left to right, so that

q(st) = (gs)t

forallge @, s,t € S.If Y = (P,T) is another transformation monoid, then the
wreath product Y o X is the transformation monoid

(PxQ,T? x S),

where we define
(pa q) (ai 8) = (p) a(q), qS),

for all (p,q) € Px @, s€ S, and a: Q — T. It is straightforward to verify that
this set of maps is closed under composition and contains the identity mapping
on P x Q.

Let M, M> be monoids. In order to make the notation more tranparent,
we will write the operation in M; additively, and denote its identity by 0 (a
convention due to Eilenberg [3]). A left action of My on M; is a map from
M, x M; into My, where the image of the pair (m2,m1) is denoted mom;, such
that

ma(m1 +m)) = mamy + mam/,

(mamy)my = ma(myma),
ma - 0= 0,

and
1- mip =my,

for all my,m} € My, ma,mly € Ms. We define the semidirect product My * Mo
relative to this left action as the set My x My together with the multiplication

(m1,ma)(my, my) = (my + mam}, mams).

It is easy to verify that this multiplication makes M; x M into a monoid with
identity element (0,1). The underlying monoid of the wreath product (P,T) o

(@, S) is isomorphic to a semidirect product 7" x S, where T" is a direct product
of |S| copies of T.

Pseudovarieties. A pseudovariety of finite semigroups is a family of finite semi-
groups that is closed under finite direct products and division. A pseudovariety
of finite monoids is defined analogously. If V; and V5 are pseudovarieties of
finite monoids, then V; * V3 is defined to be the family of all finite monoids M
that divide the underlying monoid of a wreath product (P,T) o (@, S), where
T € V1, S € V,. Equivalently, Vi x V3 consists of all divisors of semidirect
products My * My with My} € Vi, My € V4. The family V; x V, is itself a
pseudovariety.

If V; is a pseudovariety of finite semigroups, and V5 a pseudovariety of finite
monoids, then V'V consists of all finite monoids M for which there exist finite
monoids K, N and homomorphisms ¢ : K — N, ¢ : K — M, such that 1) maps
onto M, N € V3, and, for each idempotent e € N, the semigroup ¢! (e) belongs
to V1. V[lvyisa pseudovariety of finite monoids. In this instance we will also
say that there is a relational morphism o = ¢poyp~! : M — N, and write
a :m + n, if there is some k € K with ¢¥(k) = m, ¢(k) = n. Observe that if
a:m; = n; for i = 1,2, then a : myms — nine. If e € N is idempotent, then
the set a=!(e) = {m € M : @ : m — e} is a homomorphic image of ¢~ (e), and
thus is a semigroup in Vj.

In this paper we will be concerned with the following pseudovarieties of finite
monoids:

A—the pseudovariety of finite aperiodic monoids; that is, the finite monoids that
contain no nontrivial group.

G-the pseudovariety of finite groups.

G ;,1,—the finite solvable groups.

R—the finite R-trivial monoids; that is, the finite monoids with one-element R-
classes.

J—the finite J-trivial monoids; that is, the finite monoids with one-element 7-
classes.

J1-the finite commutative monoids in which every element is idempotent.
DA-the finite aperiodic monoids each of whose regular J-classes J is a subsemi-
group. (That is, in each Rees matrix representation (A4, B, G, P) of J, G is trivial
and P never maps to 0.) We will also at times (for example, in the statement of
Lemma 4 below) use DA to denote the pseudovariety of finite semigroups that
are subsemigroups of monoids in DA.

Observe that

JJCICRCDACA.

We will also consider the pseudovariety LI of finite semigroups consisting of
all semigroups S such that ese = e for all e,s € S with e idempotent. Such
semigroups are called generalized definite or locally trivial in the literature.

Our main objects of study are pseudovarieties of the form DA xH, where H
is a pseudovariety of finite groups. There are several alternative characterizations
of this pseudovariety:

Lemmad4. For any pseudovariety H of finite groups,
DA «H =DA 'H =LI '(J; « H).

Proof. First suppose M € LI"'(J; x H). Then there exist S € J;, H € H, a
monoidal semidirect product S x H, and a relational morphism ¢ : M — S x H
such that the ¢-preimage of each idempotent in S x H is in LI. Consider the
projection homomorphism 7 : S« H — H. The m-preimage of the identity is the
set {(s,1) : s € S}. Observe that this set is a submonoid of S * H isomorphic to
S; in particular, each element is an idempotent. Thus the 7 o ¢-preimage of the
identity of H is in LI"'J;, which is identical to DA (see Schiitzenberger[18]).
This shows that LI '(J; * H) C DA "H.

Next, suppose M € DA 'H. Then there exist H € H, and a relational
morphism 9 : M — H such that ¢~!(1) € DA. We now apply the category-
based methods of Tilson [28]: The derived category of the relational morphism
1 has all its base monoids in DA.. Since every such locally-DA finite category is
covered by a monoid in DA (see Almeida [1]) it follows from Derived Category
Theorem of [28] that M € DA x H.

Finally, suppose that M € DA x H. It suffices to prove that every wreath
product M o H, where M € DA and H € H, belongs to LI (J; = H). Since,
as we mentioned above, DA = LI“'J;, there exist a monoid S € J; and a
relational morphism & : M — S such that §—1(s) € LI for all s € S (since every
element of S is idempotent). This induces a relational morphism

oH:MoH —SoH

defined as follows:
doH: (fi,h1) — (f2,h2)

if and only if hy = hy and & : f1(h) — fa(h) for all h € H. The idempotents of
SoH are the elements of the form (g, 1), where g : H — S, and the jo H-preimage
of such an idempotent is

{(f,1) :Vhe H(G: f(h) = g(R))}-

This is simply the direct product of the monoids §~1(g(h)) over all h € H, and
is thus in LI. So M o H € LI *(J; x H), as required.

We will also need some facts about the pseudovarieties R+G and J; *G: RxG
consists of all finite monoids such that in each regular J-class there is exactly one
idempotent in each R-class. If H is a pseudovariety contained in G and closed
under semidirect product (for example, H = G4,;) then H+* R+ H = R « H.
(For the proofs of these last two facts, see Stiffler [20].)

For every finite semigroup S there is a reversed semigroup S™¢¥, with the
same underlying set as S, and with multiplication x given by

sxt=1ts

for all s,t € S. If V is a pseudovariety of semigroups or monoids, then V7¢?
denotes the pseudovariety consisting of the reversals of members of V. Every

group is isomorphic to its own reversal, via the anti-isomorphism g +— g~!.

Rhodes and Tilson [15] consider a symmetric version O of the wreath product.
This leads to a corresponding operation on pseudovarieties, with the property
that for any pseudovarieties V; and Vs,

(Vl DV2)TGU — 'V"i‘e‘l) DV%‘C‘U'

They show that if H is a pseudovariety contained in G, then for any pseudova-
riety 'V of finite monoids, VOH = V xH. It follows that (R*xH)"¥ = R"*V xH,
and so

JI«sHC(R+«H)™" NRxH.

Thus if M € J; * H, and J is a regular J-class of M, then there is exactly one
idempotent in each £-class and in each R-class of M. We also have

(Jl *H)rev :JIev*H :Jl *H,

so that J; « H is closed under reversal. The same argument shows DA x H is
closed under reversal as well.

3 Defining Formal Languages in Generalized First-Order
Logic

3.1 Word structures

Here we give a brief account of our particular approach to model-theoretic no-
tions. Our development follows Straubing [21]. Let X' be a finite alphabet. Let
V be a finite subset of the set of variables {z1,%2,...,}. A word structure over
(X,V) is a pair (w,I), where w € £* and I is a map from V into {1,...,m},
where m = |w|. We allow V = (—in which case we identify the word structure
with the word w—and m = 0, in which case V must be the empty set and w the
empty word.

We build formulas from the unary predicate symbols {Q, : ¢ € X}, the
binary predicate symbol <, the variable symbols z1,z2,..., the boolean con-
nectives = and A, and two kinds of quantifier symbols; 3 and 3" ™°4 ™ where
0 < r < m. The atomic formulas are those of the form z; < z and Q,z;, where
o € X, as well as the two atomic sentences true and false.

We will suppose at the outset that we never re-use a variable symbol within
a formula. That is, the same variable symbol z; cannot occur in the formula
bound by two different quantifiers, or have both a bound and a free occurrence.
Now, since this paper is all about what happens when we do re-use variable
symbols, we will soon drop this convention, but we need it for now to define
the semantics of our formulas. We will interpret a formula ¢ in a word structure
(w, I) over (X,V), where the set of free variable symbols in ¢ is contained in V,
and the set of bound variable symbols is disjoint from V. Let

wW=01-0m € 2.

We write
(wa I) ‘: Qij
and say (w,I) satisfies Q,x;, if
O1(z;) = O-

We say
(w,I) Exj <y
if I(CL']') < I(xk),

(w,I) E oA
if (w, I) satisfies both ¢ and v,
(w,I) = =¢
if (w, I) does not satisfy ¢,
(wa I) ': 3w]¢
if X
(w, 1) = ¢,
for some extension of I of I to a map from V U {z;} into {1,...,m}, and

(w,I) |: =0 mod "$J¢

if the number of such extensions I is congruent to modulo n. (Informally, this
formula says ‘the number of positions z; for which ¢ holds is congruent to r
modulo n.’)

In our subsequent discussion, we will use the boolean connectives V, —, > as
well—these can all be defined in terms of A and —. We will also use the universal
quantifier symbol V—this is definable in terms of 3.

A sentence is a formula without free variables. If ¢ is a sentence, then the set

Ly={we X :w=(w0) ¢}

is called the language defined by ¢.
Example. Let L be the set of strings over ¥ = {o,7} that contain an even
number of factors of the form oo. L is defined by the sentence

30 mod 2.(513.’1]2(.1’2 =z +1A le'l A Qg.’L'Q},
where ‘zs = ;1 + 1’ is an abbreviation for

1 < 29 A —3z3((z1 < 23) A (23 < T2)).

We will define a number of operations on formulas, which we call relativiza-
tions. Let ¢ be a formula in which the variable z does not appear. The formula

@[< mg] is constructed recursively by beginning with the outermost quantifiers
of ¢, and replacing each subformula

H*szp,
where 3* is either an ordinary existential quantifier or a modular quantifier, by
E]*.’L'j(.’ll'j <zp N\ ¢[< :ck])

(If 4 is an atomic formula then ¢[< zj] is identical to ¢.) Informally, ¢[< zi]
means ‘the prefix consisting of the positions to the left of z; satisfies ¢’. More
precisely, let w € X* and let v be a proper prefix of w. Let V be a set of variables
that does not contain zy, and let I : V — {1,...,|v[} be a map. Let I be the
extension of I to VU {z} defined by setting I(zj) = |v| + 1. Then (v,I) | ¢ if
and only if (w, 1) = ¢[< zx].

We define relativizations ¢[< x], ¢[> 2], and ¢[> x;] analogously.

Let 8 be a sentence with the property that w |= 6 if and only if every prefix
v of w satisfies 6. Let ¢ be a formula. We define the relativized formula ¢[< 6]
by recursively replacing each subformula 3*z;1) by

T2 (0[< 23] A P[< 6]).

Let w € X*, and let v be the longest prefix of w that satisfies 8. Let V be a set
of variables and let I be a map from V into {1,...,|v|}. Then (v,I) |= ¢ if and
only if (w,I) = ¢[< 6]. In particular, if ¢ is a sentence, then v satisfies ¢ if and
only if w satisfies ¢[< 6].

Let ¢,0 be as in the preceding paragraph. We define the relativized formula
@[> 0] by recursively replacing each quantified subformula 3*z ;¢ by

25 (H0[< z5] A Y[> 6]).

Let w € X*, and let w = vv’, where v is the longest prefix of w that satisfies
0. Let V be a set of variables, and let I : V — {1,...,|v'|} be a map. Let
I':V = {1,..., |w|} be the map defined by I'(z;) = I'(z;) + |v| for all z; € V.
Then (v',I) | ¢ if and only if (w,I') E ¢[> 4]. In particular, if ¢ is a sentence,
then v’ satisfies ¢ if and only if w satisfies ¢[> 6].

Example. Let ¥ = {0, 7}, and let L be the set of strings over X* given by the
regular expression

((or)* + 7(o7)*)o0 X*.

Let L' be the set of strings that contain no occurrence of either oo or 77. L' is
defined by the following sentence 6 :

—5112'13.%'2(:82 =x1+1A (le'l ~ QO—SL'Q)).

L' has the property that w € L' if and only if every prefix of w is in L'. The
following sentence ¢ says ‘the first letter is o”:

E|.’L'3(QJIL'3 A —dxy (.’L’4 < CL’3))

It follows that L is defined by the sentence
o[> 0.
According to the foregoing discussion, this sentence is
Jz3(—0[< 23] A Qozz A ~Fzg (—0[< zy] A 2y < 23)),
where 6[< z3] is given by
—Jzy (21 < z3 A dza(ze <x3AZ2 =21+ 1A (Qrx1 ¢ Qr2))).

Observe that the subformula 21 < x3 of the above formula can be eliminated.

3.2 Three-variable formulas and the proof of Theorem 1

Consider the following sentence:

JzIy(z <y A Jz(y < z A Jy(z < y))).

Strictly speaking, the meaning of this sentence is not defined in our formalism,
since it violates our convention about the re-use of variable symbols. Nonetheless,
the meaning of the sentence is clear. We can write an equivalent sentence that is
consistent with our formalism by choosing a set of variable symbols in one-to-one
correspondence with the quantifier symbols of the sentence, and replacing each
variable symbol v of the sentence by the new variable symbol z; corresponding
to the quantifier that binds v. This gives the sentence:

31’131’2(:81 < x2 A\ 3:173(.%'2 < x3 A 3.%'4(.’13'3 < 1'4)))

Thus the the sentence says that the string contains four distinct positions; i.e.,
it defines the set of strings over X of length at least 4. Thus, when we permit
re-use of variable symbols, this language is definable with two variables.

Kamp [8], and later Immerman and Kozen [7], showed that every sentence
over our base of atomic formulas that uses only ordinary (as opposed to modular)
quantifiers is equivalent to a sentence with at most three variables. Here we prove
Theorem 1, stated in 1.3: that the reduction to three variables is possible for
sentences with modular quantifiers as well. To this end we consider sequences

Tr(1) < < Tp(k),

where 7 is a permutation of {1,...,k}. Such a sequence is said to be a good
sequence if it is built in the following fashion: We set a; to be the sequence

Tk,

and, for 1 < i < k, we form a;41 either by adjoining ‘zx_;+1 <’ to the left of a;,
or ‘< Tr_;y1’ to the right of a;. ay is then a good sequence.
Example. With & = 6 we build a good sequence as follows:

Ze
T5 < Tg
Ty < x5 < Tg
Ty < T5 < Tg < 23
Ty <25 < Tg <3 < T2
1 <Tq <y <Tg <T3 < ZTo.

A three-variable definition of a sequence is constructed as follows: The first line
is always

T.

We say that x is bound to x1. The second line is either

<y

or

y<uz,

and we say that y is bound to z5. The third line is one of the three permutations
of

r<y<z

that is consistent with the second line. We say that z is bound to z3. For j > 3,
the j** line has one of the following three forms:

(a)
u:v<u<w,

where u,v,w are the three variables z,y, z in some order, and v < w appears
within the preceding line. We say that u is unbound from whatever variable z;
it was previously bound to, and is now bound to z;.

(b)

u:u<wv,

where v and v are distinct variables, and v is bound to the least element of

Z1,.-.,%j—1. We say that u is unbound from whatever variable it was previously
bound to, and is now bound to z;.
(c)

u:v <u,

where v and v are distinct variables, and v is bound to the greatest element of
Z1,--.,Zj—1. We say that u is unbound from whatever variable it was previously
bound to, and is now bound to z;.

Such a three-variable definition with k lines defines a unique ordering on
L1y---3L-
Example. Consider the following three-variable definition:

T

r <y

r<z<y
y:r<y<z
r:y<zr<z
y:r<y<z

This defines the sequence
T < Ty <5 <Tg < T3 < T

of the previous example.
Lemma5. Every good sequence is defined by a three-variable definition.

Proof. We prove this by induction on the number of variables in the good se-
quence. First note that the claim is obviously true if the good sequence in-
volves only the variables x1, 22, 23. Second, the subsequence of a good sequence
on y,...,%r that we obtain by eliminating xj is itself a good sequence on
T1,...,Tk_1. Suppose that we have a three-variable definition D for this smaller
sequence; it suffices to show that we can extend the definition to the larger se-
quence. If xj is the least element of the sequence, then by the rules of good
sequence formation, the entire sequence must be

T < Tp—1 <---<27.
In particular, zx_1, introduced on the last line of D, is bound to one of the three
variables z,y, z. Let us say it is bound to . Then we can extend the definition
by adjoining the line:
y:y<wz.

The analogous reasoning applies to the case where xj, is the largest element. So
suppose now that xj appears between two elements of the sequence; that is

T < Tk < Zj,

and that there are no elements of the sequence between x; and xj, or between
zp and z;. One of ¢ and j must be k — 1, for if not, we would have a situation
like

Tp—1 < ---<Z; <Tp <Tj,

which violates the rules of good sequence formation. Assuming ¢ = k — 1, then,
our sequence must have the form

Tp—(r—1) < < Tp—1 <Tp <Tj < -+,

with j = k—r. (We get a similar conclusion if we assume instead that j = k—1.)
This implies that one of the variables z,y, 2 is bound to z;, and another of the
variables is bound to x;—_;. Let’s say « is bound to z;, and y to z—1. So we can
extend D by adding the line:

zry<z<uz.

Thus in all cases we have a three-variable definition of the larger sequence.

We now apply the preceding lemma to prove Theorem 1. Every language in
27* defined by one of our sentences is a regular language whose syntactic monoid
contains only solvable groups. (Straubing, Thérien and Thomas [24].) Further,
every such language can be built by beginning with the languages

XroX*,
where o € X, and applying boolean operations and the operations
(Ll,LQ) — L10’L2,

where ¢ € X, and
(L1, L2) = (L1, Ly, 0,7,m),

where 0 € X, 0 < r < m, and the right-hand side denotes the set of strings w
for which the number of factorizations w = wyowy with w; € L; and wy € Ly
is congruent to r modulo m. (See, for example, Straubing [23] or Thérien [25].)
Thus if L C X* is definable by a sentence, we can construct an equivalent
sentence as follows: We begin with the sentences

32, Qo Tn,

which define the languages X*o X*. Suppose now that we have sentences ¢; and
¢, with disjoint sets of variables in {zyy1,...,2,} defining languages L, and
Lo, respectively. Then L; N Lo is defined by ¢ A ¢o, X* — L1 is defined by —¢q,
LyoLs is defined by

2k (Qomr A p1[< Ti] A P[> zi]),
and (L1, La,0,r,n) is defined by
Frmed g (Qoemk A ¢1[< k] A do[> mi))-

It follows that L is defined by a sentence in which each quantified subformula
has the form

Pz (s(z1,...,26) A Qo A),

where s(z1,...,zy) is a good sequence on some subset of {z1,...,z;}, and a is
a boolean combination of quantified formulas 3*z 11 of the same form, whose
good sequences extend s. The reason we obtain good sequences is that whenever
we add a new variable symbol in constructing the relativized formulas, we adjoin
the symbol either to the beginning or to the end of the existing sequences. We
can now apply Lemma 5 and rewrite the sentence, beginning with the outermost
quantifers, as an equivalent three-variable sentence.

3.3 The two-variable property for G,,; and R % G,,;.

Our main theorem implies that every regular language whose syntactic monoid
is in DA x G,,; is definable by a sentence that uses only two variables. Here we
prove this theorem in some easy special cases, which we will use in Section 6 in
the proof of the general result.

First we consider the languages in X* defined by sentences in which only
modular quantifiers are used. These are precisely the regular languages whose
syntactic monoids belong to G- In [23] it is shown that this class of languages
is the closure of the empty language under boolean operations and the operations

L H (L7 2*70-7 r? n)7

where 0 € X and 0 < r < n. If ¢ is a sentence that defines the language L, then
(L, X*,0,r,n) is defined by the sentence

Frmedngy(Q,z A ¢[<).

The empty language is defined by the sentence false. It follows that if M (L) €
G, then we can construct a sentence defining L by relativizing exclusively on
the left. This means (see the discussion in 3.2) that the good sequences that
arise are all of the form

Tp < < 2X2< 27.

Plainly, such a sequence admits a two-variable definition
x
y<zx
r.x <y
y:y<zx

so we can proceed as in 3.2, and obtain a two-variable sentence for L. This proves
Theorem 2, that the languages defined by sentences that use modular quantifiers
alone are defined by such sentences in which only two variables appear.

The very same argument shows that every member of the smallest family of
languages closed under boolean operations and the operations

L (L, X% 0,7,n)

and
L~ LoX*

is definable by a two-variable sentence, using both modular and ordinary quan-
tifiers. It follows from results of Stiffler [20] that this is precisely the family of
languages whose syntactic monoids belong to the pseudovariety R+ Gg,;. Observe
that the defining sentence ¢ that results has the additional property that the
formula ¢[< z], which has one free variable, is equivalent to a formula with only
two variables. We say in this instance that ¢ is a left-relativizable two-variable
sentence. We state the results of this subsection formally for future reference:

Theorem 6. If L C X* is a regular language with M (L) € R x Gy, then L is
definable by a left-relativizable two-variable sentence.

4 The Syntactic Monoid of Two-variable Definable
Languages

In this section we prove that every regular language definable by a two-variable
sentence has its syntactic monoid in DA xGg,;. This is one direction of our main
result, Theorem 3.

4.1 A normal form for two-variable formulas

The first step in our proof is to show that if §(z) is a two-variable formula
with x free, then 6 is equivalent to a two-variable formula in which an ordinary
quantifier never appears within the scope of a modular quantifier. It is sufficient
to show that if a(z,y) is a two-variable formula with z,y free, in which an
ordinary quantifier does not appear within the scope of a modular quantifier,
then
3rmed "ya(z, y)

is equivalent to a formula in this normal form.

Since « is a boolean combination of atomic formulas and quantified formulas
in which the bound variable is either x or y, we can write it as a disjunction of
three formulas of the form

TRy A ¢(x) A (y),

where R ranges over the relations <,> and =, y is not free in ¢ and z is not
free in 1. Observe that if d1,ds, 83 are disjoint formulas (that is, never satisfied
by the same word structure) then

3r mod ”y(61 V iy V 53)

is equivalent to a boolean combination of formulas 3° ™°d 7y§;. Thus we wind
up with a boolean combination of formulas

3 mod ny (zRy A $(z) A Y (y)).

Since y is not free in ¢, the above formula is equivalent to

p(z) AT 4y (zRy A Y (y)),

if s #0. If s = 0 then it is equivalent to
~¢(z) v 3y @Ry A ().

The formula
Fmedry(z =y AY(y))

is equivalent to 1(x) if s = 1, and is never satisfied otherwise, so we may now
restrict our attention to formulas of the form

3# med ny (3 Ry A Y (y)),

where R is either < or >. We will assume that R is <; the other case is treated
similarly.

The formula 1 (y) is itself a boolean combination of @,y and quantified for-
mulas. By taking boolean combinations again, we can reduce to formulas of the
form

Y(@) s Iy (w <y AQey ABi(y) A+ A Br()),

where each §; is a quantified formula (with either 3, V, or a modular quantifier).
We will show how to eliminate the §; that begin with ordinary quantifiers, so that
in the end we are left with only those §; that begin with modular quantifiers. By
the inductive hypothesis, these contain no ordinary quantifiers within the scope
of modular quantifiers.

First we introduce a new notation. A word structure (w,I) for which the
domain of I contains a single variable v will be denoted (w, %), where i = I(v).
We will consider several possible forms for g;. First,

B1(y) : Jz(z < y A §(z)).

If (w, %) is a word structure, then one of the following three conditions must hold:
(i)There is no position j such that (w,j) = 6(z).
(ii) There is such a position, and the least such position is less than or equal to

i.
(iii) There is such a position, and the least such position is greater than i.
In case (i), (w,4) | v(z) if and only if ¢ = 0 and

(w,) E =3yd(y).

Note that the modular quantifier disappears. In case (ii), (w,i) = v(z) if and
only if

(w,) = Fy(y <z Ad(y)) A

Frmedny(@ <y AQoy A J\ Bs(v)).

§=2

In case (iii), (w,i) = v(z) if and only if
(w,4) = y(6(y) AVo(z <y — —d(y))) A

n
<y AT ng(y <z AQux A /\ Bs(x)).
§=2

~(z) is thus equivalent to the disjunction of these three formulas. Note that in all
cases we have reduced the number of s within the scope of modular quantifiers.
Suppose now that (1 (y) has the form

Jz(xz > y Ad(x)).

We consider two possibilities for a word structure (w,i):
(i) There is no j > i such that (w, j) E 6(z).
(ii) There exists j > i such that (w,j) E d(z).

In the first case, (w,3) = v(z) if and only if t = 0 and

(w,7) = Vy(y >z = —d(z)).

In the second case, consider the greatest j such that (w,j) = 6(z). Now for
(w, 1) to satisfy vy, the number of positions between i and j that contain a o and
satisfy the remaining f, must be congruent to ¢ modulo n. This would appear
to require the introduction of a third variable, but now we get to use the fact
that Z, is a group: We find that (w,?) | v(z) if and only if (w,) satifies the
disjunction, over all pairs (¢1,t2) such that t; — t2 = ¢ in Z,, of the formulas

k
Jy(y > 2 A(Yy) AVz(z >y — —6(y)) AT (z <y A Qpz A /\ Bs()))
s§=2
k

A Jh mod "y(y <zAQsy /\ /Bs(y))

§=2

Note that once again, we reduce the number of 3, within the scope of the modular
quantifier.
The other two possible forms for ; are

Vz(z <y — 6(x))

and
Ve(z >y — 6(z)).

These are handled similarly to the two preceding cases. In all instances, we reduce
the number of 3, within the scope of the modular quantifier. We continue in this
way with Bs, 83, etc. until the only S5 remaining within the scope of the modular
quantifiers are themselves formulas that use only modular quantifiers.
Example. Let us illustrate the foregoing argument with an example. We con-
sider the language L over the alphabet {a, b} such that the number of b’s that
have at least two a’s to the left of it and one a to the right of it is odd. L is
defined by the sentence

FLmod 20y A B1(z) A Ba(x)),

where 1 (z), which says that there are at least two a’s to the left of z, is

Fy(Qy Ay <z A3x(z <yAQux)),

and f2(x), which says that there is at least one a to the right of x, is

Fy(Qay Ny >).

Observe that our sentence has two variables. The new sentence will say, in effect,
that there are at least three a’s (which we can express with two variables, using
only ordinary quantifiers) and that either the number of b’s following the second
a is odd and the number of b’s following the last a is even, or the number of b’s
following the second a is even and the number of b’s following the last a is odd.
Each of these conditions can be expressed as a two-variable sentence in which
the modular quantifiers are pushed to the bottom level. For example, to say that
the number of b’s following the second a is even we use the sentence

(o (z) A ag(z) AF0™020(Qpy Ay >).

The formula a; (z) is
Qar AJy(y <z A Quy)

and ax(z) is
—Jy(y <z A Quy AJz(z < y A Qqux)).

4.2 Games and Formulas

Let us fix a modulus m and a depth r, and let us treat as atomic formulas all two-
variable formulas with one free variable using exclusively modular quantifiers of
modulus m and depth no more than r. Observe that there are only finitely many
inequivalent formulas of this form.

We look at two-variable first-order formulas over this base of atoms. By the
depth of such a formula we mean the depth of nesting of the ordinary first-order
quantifiers. Because of our normal form result in the preceding subsection, it is
sufficient to prove that the syntactic monoid of any language defined by such a
formula is in DA * G;.

For each k£ > 0 we define two equivalence relations, one on words, and one
on word structures of the form (w,), both denoted =:

w1 =g W2

if and only if w; and wy satisfy the same sentences of depth k or less. For word
structures,

(wlai) =k (U)Q,j)

if and only if the two structures satisfy the same formulas ¢(z) (with one free
variable) of depth % or less.

Let us give an explicit description of =¢: Let H be the pseudovariety of finite
abelian groups of exponent m, and let H" be the pseudovariety consisting of all
finite groups that have a normal series of length r or less in which every quotient
group belongs to H. For every finite alphabet X, H” has a finite X-generated
free object F, and there is the canonical homomorphism 7 : X* — F. It follows
from results in Section VIL.2 of [21] that two words are =¢-equivalent if and
only if they have the same image under 7. Furthermore, two structures (wq, %)
and (ws, j) are =g-equivalent if and only if there are factorizations

wy = UV

and
wy = u'ov'

where 0 € X, |u| =i —1,|u'| = j — 1,n(u) = w(v') and w(v) = w(v'). From this
follows the important fact that not only is =¢ a congruence on words, but it is
a congruence on structures in the sense that if

(wlai) =0 (U}2,j),

U1 =g U2,

and
U1 =g V2,

then

U1(w1 , i)v1 =0 U2 (w2;j)”2-

(uy (w1, 1)vy is shorthand for (ujwwvy,i + |uql).)

For k > 0, we characterize =4, in terms of a version of the Ehrenfeucht-Fraissé
game introduced by Wilke [30]. The game is played on two structures (wy,) and
(wa, 7). If these are not =gp-equivalent, then Player I wins at once, in zero rounds.
Otherwise, each round proceeds as follows. Think of each structure as a word
with a pebble on one position. Player I picks one of the words and moves the
pebble one or more positions to the left or right. For example, he might pick
(w1,7) and change it to (wi,4"), where i < 4'. Player II must now move the
pebble in the other string in the same direction (left if Player I moved left, right
if Player I moved right). In this example, Player IT must produce (w2, ;') with

j < j'. The two new structures are required to be =g-equivalent—Player II loses
if she cannot meet this requirement. If Player II can correctly respond for k
successive rounds, then she wins the game.

We can also play the game on words. In the first round, Player I places his
pebble on a position in one of the words, and Player II pebbles a position in
the other word. The resulting structures (w1,%) (ws,j) are required to be =o-
equivalent, or Player II loses. Play then proceeds as above for k¥ — 1 additional
rounds.

We now show that the standard result for model-theoretic games holds for
this variant.

Lemma7. (wy,i) = (w2,7) if and only if Player II has a winning strategy in
the k-round game on these two structures. w1 =y w2 if and only if Player II has
a winning strategy in the k-round game on these two words.

Proof. First we prove by induction that if ¥ > 0 and (wq,¢) =¢ (w2,j), then
Player IT has a winning strategy in the k-round game on these two structures.
Note that the base case k = 0 is trivial. Suppose Player I makes his first move
in (w1,4) and moves the pebble to the right. (The three other cases are treated
analogously.) The result is a structure (wi,i'), where i < i’. The =j_;-class
of (w1,4'") is defined by a two-variable formula 1 (z) of depth k£ — 1 having one
free variable. We then have (wy,%) |= Jy(z < y A ¢¥(y)), which is a two-variable
formula. By assumption (w2, j) satisfies the same formula, so there exists j' > j
such that (wy,4") =k—1 (w2,7"). The inductive hypothesis implies that Player II
has a winning strategy in the (k — 1)-round game on these two structures. Thus
Player II replies to Player I’s first move by moving the pebble on ws to position
j', and thereafter plays her winning strategy in the (k — 1)-round game.

Next we prove by induction that if (wq,%) and (ws, j) are not =g-equivalent,
then Player I has a winning strategy in the k-round game. Once again, the case
k = 0 is trivial. The non-equivalence implies that there is a two-variable formula

3z(zRy A d(x) A (y))

where R denotes < or >, such that ¢ and ¢ have depth less than k, z is not
free in ¢ and y is not free in ¢, and such that one of the structures satisfies
the formula and the other does not. We can suppose without loss of generality
that (w,%) satisfies the formula and that R is <. We can pull ¢(y) outside the
quantifier. Observe that if (w2, j) does not satisfy 4 (y), then by the inductive
hypothesis, Player I has a winning strategy in the (k — 1)-round game in the
two structures, and hence in the k-round game. Thus we can suppose that the
formula is
z(z < y A ¢(z)).

Player I begins by moving the pebble in w; to a position i’ < ¢ such that
(w1,i") |E ¢(x). We are supposing that there is no position j' < j such that
(wa, ") E ¢(z), so wherever Player IT moves, the resulting pointed word (ws, j')
will not be (k — 1)-equivalent to (w,4'). Thus, by the inductive hypothesis,
Player I has a strategy that will win within the next k — 1 rounds.

Now let us consider the game for ordinary words. If wy = we and Player I
makes his initial placement in wy, then the resulting structure (wy,%) satisfies
¢(x), where ¢(x) is a two-variable formula of depth k — 1 that defines the =4_;-
class of (wy,4). Thus w; = Jz¢d(z) and we | Jze(z), so there is a position j
in wo such that (wy,i) =g—1 (w2,7). We have already shown that Player II can
win the k£ — 1-round game in these two structures, so Player II has a winning
strategy for the k-round game in w; and wa.

Conversely, suppose w; and ws are not =p-equivalent. There is thus a two-
variable sentence Jz¢(x), where ¢ has depth less than k, satisfied by one (say, w)
and not the other of the two words. Thus Player I can play in w; and produce a
structure (wy,) such that any reply (w2, 7) by Player II is not (k—1)-equivalent.
Thus, by what we proved above, Player I can win the game in the next k — 1
rounds.

It follows from this game characterization, and the fact that =g is a congru-
ence on structures, that = is a congruence onX™. Since there are only finitely
many pairwise inequivalent sentences at each quantifier depth, this congruence
has finite index. From our normal form result in 4.1, every language defined by
a two-variable sentence is a union of =g-classes for some k,m and r. So it is
enough to prove that the quotient monoid X*/ = belongs to DA x G-

We will prove this by induction on k. X*/ =¢ is the free X-generated group in
H", and thus is in Gg,;. The passage from 0 to 1 is a special case: It follows from
a result in Straubing [21] that the syntactic monoid of any language defined by
a sentence of depth 1 is in J;O0Gy,;, which (Rhodes and Tilson [15]) is the same
as J1 * G Since each =;-class is such a language, it follows that X*/ =€
J1 * Gsol-

We now carry out the inductive step from =; to =j41, where £ > 1. We
claim that under the homomorphism from X*/ =41 to X*/ =, the preimage
of each idempotent is in LI. By the inductive hypothesis, this will imply that
the syntactic monoid of each =4 -class is in

LI (DA * Gyo) = LI™ (LT (DA * G,1).

It is easy to verify that the class of homomorphisms with the property that the
preimage of each idempotent is in LI is closed under composition. It follows that
LI"'(LI7'V) = LIV for every pseudovariety V of finite monoids, so our claim
will imply that the syntactic monoid of each =y 1-class is in LI*I(J 1% Ggo) =
DA % Gg,;, and thus complete the proof.

Suppose u and v are =g-equivalent words in X*, and are idempotent in
X*/ =, . Suppose further that u is idempotent in X*/ =¢41 . We need to show

UVY =41 U-

(That’s what it means for this to be a LI-morphism: That the inverse image of
each idempotent satisfies the identity ese = e whenever e is idempotent.)
Since u is idempotent in X*/ =1, the above equation is equivalent to:

UUVUYU =gy VUUUY

By Lemma 7 it suffices to show that Player II has a winning strategy on this
pair of words in the (k + 1)-round game. The strategy is simply this: If Player
I moves anywhere but the middle segment of one of the words Player II will
respond on the corresponding position in the other word. If Player I ever moves
into the middle segment, Player II will respond according to her strategy for the
k-round game in u and v. If Player I moves out of the middle segment and back
in again, Player II picks up the middle segment strategy again, starting from
the beginning. This strategy will work for Player IT unless Player I makes all his
moves in the middle segments. In that case, after k£ rounds, the two structures
look like this:
wu(v, i) uu, uu(u, j)uu.

Suppose Player I now moves to the right in the first word, remaining in v, giving
vu(v, i uu

with ¢ < 4’ Player II might not be able to respond in the middle segment of the
other word. Instead, she picks a position j' in u such that (v,4') =¢ (u,j’) (such
a position exists because u = v and k > 1) and moves the pebble to the right
to produce

vuu(u, j')u.

Since =g is a congruence on word structures, this implies (using the fact that
u, being idempotent for =g, is idempotent for =) that these two structures are
=op-equivalent. Thus whatever Player I does, Player II can play safely for k£ + 1
successive rounds.

5 1Ideal Structure of Monoids in DA * G,.

In this section we establish some algebraic properties of pseudovarieties of the
form DA x H, where H is a pseudovariety of finite groups. Most parts of our
Lemma 9 below, as well as Theorem 12 can be extracted from results of Stein-
berg [19]. Let F be a set of partial one-to-one functions from a finite set X into
itself. We will denote the image of x € X under f € F by zf. We say that F
is H-extendible if there is a finite set Y with X C Y, and a permutation group
G on Y such that G € H, and for each f € F there exists g € G such that f is
equal to the restriction of g to the domain of f.

Lemma8. Let M € DA xG. Let ¢ : ¥* — M be a homomorphism. Let J be a
regqular J-class of M, and let (A, B,G, P) be a Rees matriz representation of J.
Then there exist a partition of A, a partition of B, and a bijection between the
sets of blocks of the two partitions such that P(b,a) # 0 if and only if the blocks
containing a and b correspond under the bijection.

Proof. We first prove the following property (which, in fact, characterizes DA x
G.):

Let M € DA x G and e, f are J-equivalent idempotents of M, and ef =7 e,
then ef is idempotent.

To show this, we use Lemma 4: DA « G = DA 'G. There is thus a group
H and a DA-relational morphism a : M — H. From the idempotency of e and
f it follows that
ae—la:f—1.

Since ef <r e and ef =7 e, it follows that ef =x e, and thus there is s € M
such that

e=efs=effs=ef(fs)”.

Since a : (fs)¥ — 1, this shows e and ef are R-equivalent, and thus J-
equivalent, in a!(1). Since a~1(1) € DA, this implies ef is idempotent.

Now consider a Rees matrix representation (A, B, G, P) of a regular [J-class
J of M € DA x G. For each a € A define

B(a) ={be€ B: P(b,a) # 0}.

Now suppose B(a) N B(a') # (. Then there is some b such that P(b,a) and
P(b,a') are nonzero. Suppose further that P(b',a) # 0 for some b’ € B. Thus
there are g, g’ € G such that e = (a’,9,b) and f = (a,¢’,b") are idempotent, and
f € J. By our claim, ef is idempotent, which implies P(b',a’) # 0. Thus the sets
B(a) and B(a') are identical, and so the family of sets {B(a) : a € A} partitions
B. We define a partition of A in the analogous fashion. Observe now that if
b,b' € B(a), then P(b,a) and P(b', a) are both nonzero, so that a € A(b)NA(b),
and thus A(b) = A(b'). This gives the one-to-one correspondence between the
sets of blocks of the two partitions, proving part the lemma.

Lemma9. Let M € DA «H, where H is a pseudovariety of finite groups. Let
¥, J, a, G, and B be as in Lemma 8, and let B be the set of blocks of the partition
of B.

(a)Let s € M. There is a one-to-one partial function w5 : B — B such that if
b € B, and B(b) is the block containing b, then B(b)7ws is defined if and only if
(a,g,b)s € J, in which case B(b)ws is the block containing the right co-ordinate
of (a, g,b)s. Moreover, the set of partial functions {ms : s € M} is H-extendible.
(b) Let By, By be two blocks of the partition of B.Then the language

{w S PN Bl7l'¢(w) = Bz}

s recognized by a monoid in J; x H
(¢) Suppose H+H = H. Let (a,g,b) € J, g’ € G. Then the language

{we X : (a,9,b)¢(w) € {a} x {9} x B}

s recognized by a monoid in R« H.

Proof. For part (a), suppose (a,g,b)s = (a1,g1,b1), for some s € S. Since
(a1, 91,b1) is R-equivaent to (a,g,b), we have a1 = a. We can write (a,g,b) =
(a, g,b)e for some idempotent e in the L-class of (a,g,b), and set ¢ = es. Thus
b1 is the right-hand co-ordinate of ¢. In particular, b; depends only on b and s.
Thus we have a well-defined partial function p; from B to itself, with by = ps(b).

If b’ belongs to the same block as b, then for any a’, g, we have (a',g',b')t € J,
because P(V',a) # 0, and so (a’,¢',b")s € J. Thus ps(d') is defined whenever
ps(b) is. Let (a’, g',b")s = (aa, g2, b2). Choose o' so that P(by,a') is nonzero, and
let v = s(a’,1,b). Then (a,g,b)u € J, which implies u € J, and thus, since b
and b’ belong to the same block, (a', ¢',b")u € J. This implies P(bs, a') # 0, and
thus by = p,(b) belongs to the same block as by = ps(b').

This shows that there is a well-defined partial function m; on the set B of
blocks. Suppose now that for some b,b' € B, ps(b) and ps(b') are in the same
block. We set (a, g,b)s = (a1, 91,b1) and (a', ¢',b')s = (a2, g2, b2)- Choose o' such
that P(by,a’) is nonzero. Thus P(bs, ') is nonzero, and so with u = s(a’,1,b)
we have (a,g,b)u € J and (a’,¢',b')u € J. This implies u € J, and thus if o” is
the left co-ordinate of u, P(b, ") and P(b', ") are both nonzero. Thus b and v’
are in the same block, and consequently 7, is one-to-one.

It remains to prove the H-extendibility property. We will begin by analyzing
the structure of semidirect products S * H, where S € J; and H € H. Idempo-
tents in S * H have the form (s,1), where s € S. What is the R-class of such an
idempotent? If (s,1) =% (s', g), then there exist ¢,¢' € S such that

(s, 1)(t,9) = (5", 9),
and

(s, 9)(t',g7") = (5,1).
Thus

s'=s5+t,s=5+gt.

Observe that in S, the <r, <., and <7 orderings all coincide, and the J-
classes are singletons. The equations above imply s’ < s < s’ (we don’t need
the subscripts on the < symbols) and thus s = s'. It follows that the R-class of
(s,1)is {s} x G.

What is the L-class of (s,1) ? If (s',g) =, (s,1) then there exist ¢t,t' € S
such that

(t,9)(s,1) = (5", 9),
and

t',971)(s',9) = (5,1).
Thus

s'=t+gs,s=t+g s,

so s' < gs. Also gs = gt+s', from which it follows that gs < s’, and thus s’ = gs.
So the L-class of (s,1) consists of all elements of the form (gs, g), where g € H.
It follows now that the J-class J of (s,1) consists of all elements of the form
(gs, h), where g, h € H. Two such elements, (g1, h1), (g28, ha), are R-equivalent
if g15 = gos, that is, if g; and g2 belong to the same left coset of the subgroup

K(s)={g9€ H:gs=s}

of H. The two elements are L-equivalent if hohi'g1s = gos, that is, if h;'g; and
hy'gs belong to the same left coset of K(s). We can thus identify the sets A
and B in the Rees matrix representation of J with the set of left cosets of K (s).
Observe that each L-class, as well as each R-class, contains a single idempotent,
and thus each block of the partition of B contains a single element. Let us look
now at the action of S x H on these blocks. Let (g1s,92) € J and (¢,h) € S x H.
Then

(918, 92)(u, h) = (915 + g2u, g2h).

For this product to be in J, we need ¢15 + gou = g1s. In this case the L-
class of (g15,g2) is associated with the left coset g5 'g1K (s), and the L-class of
the product with the left coset h~'g; g1 K (s). We can thus extend the partial
function on blocks induced by (u, h) to the permutation

9K (s) = h™'gK (s)

of the set of left cosets. The resulting permutation group is a quotient of H.
Thus, for the regular J-classes of S * H, the set {m) : (s,h) € S+ H} is
H-extendible.

To obtain H-extendibility for arbitrary monoids in DA+H, we apply Lemma 4:
DA +H = LI '(J; * H). Thus if M € DA x H, there is a semidirect product
N = S«+H,with S € J; and H € H, and an LI-relational morphism o : M — N.
Let J be a regular J-class of M, and consider two elements s = (a,1,b;) and
t = (a,1,bs) of J, relative to a fixed Rees matrix representation of this class. We
now choose a < s-minimal element = of NV such that

o8I,
Since t = ss' for some s’ € J, we have, for some z' € N,
a:ty=zr <p
Similarly, s = tt’ for some t' € J, so we have, for some y’ € N,
a:s—=zz'y <py<g .

The minimality condition implies that all these elements belong to the same
J-class J' of N. Thus z =g y in N.

Since s is J-equivalent (in fact R-equivalent) to an idempotent, the same
sort of minimality argument shows that z is as well, so J' is a regular J-class
of N.

We now claim that = and y are L-equivalent in N if and only if b; and b
belong to the same B-block of J. First, suppose b; and bs belong to the same
block. Then su,tu € J for some v € J. We can again show, using minimality,
that there exists z € J' such that a : u — 2z, and hence zz,yz € J'. Thus, in a

Rees matrix representation of J', the right co-ordinates of z and y belong to the
same block, and are consequently L£-equivalent. Conversely, suppose = and y are
L-equivalent. Let us choose u,v € J such that e = usv is an idempotent in J.
There exist (again by minimality) w,z € J' such that a : u — w and a : v — 2.
There also exists n > 0 such that m" is idempotent for all m € N. Thus

a:e= (usv)" = (wzz)" = f,

which is idempotent. By minimality, the idempotent (wyz)™ belongs to the same
R-class and L-class as f, and thus (wyz)™ = f. It follows that both e and (utv)™
belong to a~!(1). Since « is an LI-relational morphism,

e=-c(utv)"e=e € J.

This shows that tv, like sv, is in J, and thus by, by belong to the same B-block
of J.

It follows that a embeds the set of B-blocks of J into the set of B-blocks of
J'. The action of 7,,, for m € M, on the B-blocks of J, is identical to the action
of m,, where a : m — n, on the B-blocks of J'. Since we have H-extendibility
for N, we now have it for M as well.

To prove part (b), it is sufficient to show that the language is recognized by
an automaton whose underlying transformation monoid is in J; *H. By what we
showed above, there is a superset X of the set of B-blocks of JJ and a permutation
group H on X such that H € H, and for each s € M there exists 7, € H that
extends ;. The state set of the automaton is {0,1} x X, the initial state is
(1, By) and the sole accepting state is (1, Bz). The action of ¢ € X on the state
set is given by

(7:,.’17)0' = (7' g, W:ﬁ(a))a
where j = 1 if z is in the domain of my(,), and j = 0, otherwise. Thus each state
transition is a transformation in the wreath product ({0,1},U;) o (X, H), where
Ui is the monoid {0,1} with the standard multiplication. Since U; € Jy, this
establishes the claim.

To prove part (c), it is helpful to have the following normal form for the Rees
matrix representation of a regular J-class: We claim that the representation can
be chosen so that for all b € B, a € A, P(b,a) is either 0 or 1. To prove this, we
choose a fixed representative for each block in the partition of A, and for each
block in the partition of B: If a € A, b € B, then a(a), a(b), B(a), B(b) denote
the chosen representatives of A(a), A(b), B(a), B(b), respectively.

Let e; = (a4, i, bi), i = 1,2, be idempotents with P(by,as) # 0. Idempotence
implies g; = P(b;,a;)~! for i = 1,2. We have ejes € J, so as we proved above,
e1es is idempotent. If we write the equation ejes = ejeseqes in terms of the Rees
matrix representation, we obtain:

P(ba,a1)P(b1,a1) " P(by,a2)P(b,a2) "' =1

with this identity holding whenever a2 € A(a1) and by,bs € B(a1). We now
define a new map P* : B x A — GU{0} by setting P*(b,a) = P(8(a), a(b)) ! if

P(b,a) # 0, and P*(b,a) = 0 otherwise. A straightforward computation, using
the above identity, shows that the map

(a,9,b) = (a, P(B(a),a) "' gP(b, (b)) ",)

is an isomorphism from (A, B, G, P*) onto (A, B,G, P).
We now define a map @ : B x A — G U {0} by setting Q(b,a) to be 1 if
P(b,a) # 0 and Q(b,a) = 0 otherwise. The map

(a,9,b) = (a, gP*(B(b)a(b)) ™", b)

then defines an isomorphism from (A4, B, G, @) onto (A, B,G, P*).

We now suppose that the Rees matrix representation of our J-class J has this
normal form. Suppose that (a, g,b) € J, s € M, and (a,g,b)s = (a,g', V') € J. We
claim that for every (ay, g1,b1) € J with by in the same block as b, (a1, 91,b1)s =
(a1,9197 14", ps(b1)). To see this, note that

(a7 9, b)s(a(bl)a 1, bl) = (a7 gla bl):

SO
s(a(b'),1,0") = (', 97 "¢, 1),

where a' € A(b). Thus

(alagla bl)s(a(bl)a a, b) = (alaglg_lgla bl):

which proves the claim. Therefore there is a map f, from the set of B-blocks of
J into G such that whenever (a, g,b)s € J, the second co-ordinate of (a,g,b)s
is g - fs(B(b)). We use this fact to construct an automaton that recognizes the
given language. The state set of the automaton is G x {0,1} x X, where X is as
defined in the first part of the proof. The initial state is (g, 1, B(b)) and the set
of final states is {g'} x {1} x X. The action of o € X on the state set is given by

(hyi,z)o = (h- fy(o) (@), - Jyxmy (),

where j is as in the first part of this proof. (The map fy(,) can be extended
to X in an arbitrary manner.) Each state transition is a transformation in the
wreath product

(G: G) o ({0: 1}7 Ul) o (X, H)
Since G, being a group contained in M, must itself belong to H, it follows from

results in the cited reference by Stiffler, and from our assumption that HxH = H,
that the underlying monoid of this wreath product is in R * G-

6 Two-Variable Definability for DA x G,;.

Let X be a finite alphabet. We will prove in this section that if L C X* is
recognized by a monoid M € DA x G4, then L is definable by a sentence with
two variables. This will complete the proof of Theorem 3.
Let ¢ : ¥* — M be a homomorphism. Each w € X* has a unique factoriza-
tion
W = Woo1W1 - -OpWkg,

where each o; is in X, ¢(wo) =r 1, and where, for i = 1,...,k,

d(woor - - o3w;) =R P(weor -+ - wi—10;) <R P(Weoy - - Wi—1).

Let s,t € M, with s =g t. We define L[s,t] = {w € X* : s - ¢(w) = t}. Thus, if
m € M, ¢~1(m) is the union of all languages of the form

L[]., to]O’lL[to - ¢(O’1), t1] .- O’kL[tk,1 - ¢(Uk), tk], (1)

where ty = m, and, for i = 1,...,k, t; =g t;_1 - #(0;) <r t;_1. This union is
finite, since k is bounded above by the number of R-classes of M. It is therefore
sufficient to show that every language of the form (1) is definable by a two-
variable sentence. We prove this by induction on |M|: If |[M| = 1, then the
language (1) is X*, which is defined by the O-variable sentence true. We thus
suppose |M| > 1. Our inductive hypothesis is that for all M’ € DA * G4, with
|M'| < | M|, languages of the form (1) are two-variable definable.

We prove the assertion for M by a second induction, this time on k. We
begin by considering languages of the form Lls,t]. First, suppose that the R-
class containing s and ¢ is contained in a regular J-class J of M. We identify
J with a Rees matrix representation (A4, B, G, P). There is a partition of B as
specified in Lemma, 8; as before, we denote by B(b) the block of this partition
containing the element b. Let s = (a,g,b),t = (a’g’,b'). In order for a word w to
belong to L[s,t], we need either:

(a) p(w) ¢ J and s¢p(w) = t, or

(b) (w) € J, B(b) is in the domain of 74(,,), the middle co-ordinate of (a, g, b)#(w)
is ¢', and w = wyows, where o € X, ¢(w2) ¢ J, and ¢(ow,) € J with right co-
ordinate b'.

The set of strings satisfying condition (a) is recognized by the monoid M/I,
where [is the ideal consisting of all elements of M that are not strictly above
J in the J-ordering. If |M/I| = |M| then J consists of a single element, which
is the zero of M, and L[s,t] = X*. Thus we may suppose |M/I| < |M]|. Since
M/I € DA x Gy, the inductive hypothesis implies that this set of strings is
two-variable definable.

By Lemma 9, the set of strings w such that B(b) is in the domain of 7y
is recognized by a monoid in Jq * G4, and, since Ggop * Gso1 = Gsor, the set of
strings w such that the middle co-ordinate of (a, g, b)¢(w) is ¢’ is recognized by a
monoid in R * Ggy. By Theorem 6, these are both definable by left-relativizable
two-variable sentences. Let o € X, and let K, be the set of strings wiows,

where ¢(ws) ¢ J, and ¢(owsy) € J with right-co-ordinate b. K, is then a union
of sets of the form (1), but with the sets Ls, t] replaced by their £-class duals,
with respect to the monoid M/I. Since, as we noted in the remarks following
Lemma 4, DA * Gy, is closed under reversal, the inductive hypothesis implies
that each K, is two-variable definable.

In the case where J is a null [J-class, the product of two elements of J is not
in J. Thus Ls, t] is recognized by M /I, where I is as defined above, and is thus
two-variable definable.

We now suppose that we have a two-variable sentence J for the language

Lltip(oit1), tit1]oiva - - Litk—16(ok), ti],

and use it to obtain a two-variable definition for L' = L[t;_1¢(03),ti]oit1 L.
First we consider the case where the J-class J that contains t; 1¢(o;) and t; is
regular. Let t;_16(0;) = (a1, 91,b1), ti = (az,g2,b2). Let 6 be a left-relativizable
two-variable sentence for the set of strings w such that B(b;) is in the domain
of m4(u), and n a left-relativizable two-variable sentence for the set of strings u
such that the middle co-ordinate of (a1, g1, b1)d(u) is go. Such sentences exist
by Lemma 9 and Theorem 6. Observe further that if B(b;) is in the domain of
¢(u), then it is in the domain of ¢(u') for any prefix u' of u; thus 8 has the prefix
property discussed in Section 3.1.

Let ¢ be a two-variable sentence for the set of strings u such that u = ujous,
with o € X, ¢(u2) ¢ J, and ¢(ouz) € J with right co-ordinate b2. We showed
above that such a sentence exists. Let ¢’ be a two-variable sentence for the set
of strings w such that ¢(u) ¢ J, and (a1,91,b1)¢(u) = (a2, g2, b2). Again, we
showed above that such a sentence exists.

Our sentence defining L' is

32(Qoipaz ANO[< 2] A—B[< 2]) A((nA Q) V ()< O] AS[> 6]

Observe that because of the left-relativizability of 8, all the relativizations in the
above sentence are two-variable formulas.

For the case of a null [7-class, we proceed in the identical fashion, except now
we do not need formulas analogous to 5 and (.

7 Extensions of the Main Result and Directions for
Further Research

7.1 Characterization of DA.

As we mentioned in the Introduction, Thérien and Wilke [26] considered two-
variable sentences with only ordinary quantifiers and proved:

Theorem 10. L is definable by a first-order sentence with two variables if and
only if M (L) € DA.

We have not used this result in the proof of our main theorem; in fact, it
follows fairly easily from the arguments that we used to prove Theorem 3. Let
us briefly describe how. In the case of two-variable formulas without modular
quantifiers, the equivalence relation =g on words, introduced in 4.2, is the trivial
equivalence that identifies all words, and the relation =g on structures identifies
(w1,i) and (ws, j) if the i** letter of w; is equal to the jt* letter of wy. Lemma
7 continues to hold. It is easy to see that for words wi,ws, wy =1 ws if and
only if wy and ws contain the same letters, and thus the syntactic monoid of
any language defined by a sentence of depth 1 is in J;. The game argument of
4.2 then shows that the syntactic monoid of every language definable by a two-
variable sentence is in LI '(J;) = DA. Observe that the normal form result in
4.1 is of no relevance.

For the converse, we observe that for regular 7-classes of monoids in DA, the
partitions of A and B into blocks are trivial: There is just one A-block and one
B-block. The argument given in Section 6 now goes through as before; we need
only observe that we never have to introduce a modular quantifier. Note that the
set of strings w such that the unique B-block is in the domain of 7, therefore
has the form I'*, where I' C ¥, and is thus defined by the one-variable sentence
Vx Vyer @z. We need never concern ourselves with the middle coordinates in
Rees matrix representations, so we do not require a sentence analogous to the
sentence 7 in that proof.

7.2 33[MOD] N II,[MOD]

Let us denote by IT5[<] the family of languages over X' defined by II>-sentences
over the base of atomic formulas z; < z;, and Q,z;, where ¢ € X. Note that
there is no restriction on the number of variables. Similarly, we denote by X5[<]
the family of languages defined by X5-sentences. Pin and Weil [14] prove that
Xo[<]NII2[<] is exactly the family of languages whose syntactic monoids belong
to the pseudovariety DA.

Here we extend this theorem: Let us denote by IIL,[MOD] the family of
languages defined by Il>-sentences over the base of formulas that use only the
aforementioned atomic formulas and modular quantifiers. X>[MOD] is defined
analogously. Here we prove that the intersection of these two classes is exactly
the class of languages definable with two variables.

Theorem 11. Let L C X*. L € X,[MOD] N II,[MOD] if and only if M(L) €
DA % G,,;.

Proof. We first suppose M (L) € DAxG;, and prove L € X,[M ODINII,[M OD].
By Lemma 4,
DA Gyo = LI7'(J1 % Gyor).

It follows now from results of Pin, Straubing and Thérien [13], and Pin and
Weil [14], that

L € Pol(J; x Ggp1) N CoPol(J1 * Ggep)-

Here, Pol(V) denotes the family of languages that are unions of concatenation
products of the form

L00'1L1 . 'O'kLk,

where for all i, o; € X, and M(L;) € V. CoPol(V) denotes the family of com-
plements of these languages. (See Theorems 7.1 and 7.2 of [14].)

Since X3[MOD)] is closed under union, and since the complement of a lan-
guage in X5[MOD] is in II[MOD], it suffices to show that in the case V =
J1 % G1, each such concatenation product belongs to X2[MOD].

The languages L; whose syntactic monoids belong to J; * G, are boolean
combinations of languages of the form KoX*, where M (K) € Gy, and 0 € X.
These are consequently definable by boolean combinations of sentences of the
form Jx@(x), where ¢ uses only modular quantifiers. It follows that the product
Looy Ly -- - o Ly, is defined by a sentence of the form

3-'1:133;2 o 3$k¢(~731, .- 7'7:k)7
where 1 is a boolean combination of formulas of the form
Fz(z; <z AT < @it1 A Qo (i) A Qoiyy (Tig1) A ¢ (2, 30, Tig1),

and where ¢' is the relativization of ¢ to the interval between z; and z;11. (We
mean to include in this general description the formulas in which only zj is
free and in which only z; is free.) We can write this boolean combination v in
disjunctive normal form. Now the quantifier block

dzq - --Jxy,

commutes with Vv, and
Jza A3z

is equivalent to
Elz'ﬂz”(o/ A B//)’

where o' and 8" are obtained from a and 8 by renaming variables. It follows
that our sentence is equivalent to a disjunction of sentences of the form

Axq -+ - zg (21 - - - 2oy A ~Tyd),

where v and § use only modular quantifiers. Each such sentence is in turn equiv-
alent to

Axq - - -z Iz A 2, Vy(y A =6).

Since the disjunction of Ys-sentences is a Xs-sentence, we have L € X3 [M OD],
as required.

For the converse direction, let L € X3[M OD]NII;[MOD]. Since L € X3[MOD],
L is defined by a sentence of the form

Az -~ -z Vy1 - - - Vyrh,

where 1 uses only modular quantifiers. Let d be the depth of nesting of the
modular quantifiers in ¢/, and let m be the least common multiple of the moduli in
1. Let = be the equivalence relation on X* that identifies two words if they satisfy
the same sentences of quantifier depth d that use only modular quantifiers whose
moduli divide m. Observe that = is precisely the congruence =¢ for modulus m
and depth d introduced in 4.2. Let s > 0, and let =, be the equivalence relation
on X* that identifies two words v and v’ if for every factorization

U = VoT1V1 " * - TpUp,
with p < s and 7; € X for 1 < i < p, there exists a factorization
v = vgTivy - TpUp,

with v; = v} for 0 < ¢ < p, and if, conversely, for each such factorization of v’
there exists a corresponding factorization of v.

It is not hard to show that =, is a congruence of finite index on X*. (See,
for example, Thérien [25].)

We claim that L is a union of languages of the form

L00'1L1 . 'Gqu,

for some ¢, where each o; is a letter of X, and each L; is an =,-class. To prove
this claim, let w € L. Then

w =3z - -z Yy - - - Yy
There thus exists a map I : {z1,...,2,} = {1,...,|w|} such that
(w,I) = Vy1 -+ - Vypih.
The map I gives a factorization
W = woo Wy - - - CWy,

where the o; are the letters in the positions corresponding to the image of I.
Note that t < k. Now let

o ! !
W = Wyo1Wy * OgWy,

where w; 22, w} for 1 < i <t. Define I' : {z1,...,zx} = {1,..., ||} as follows:
If I(x;) is the position in w occupied by o; in the above factorization of w, then
I'(z;) is the position in w' occupied by o; in the given factorization of w'. We
claim

(W', I') |= Vy1 - - - Vy,ap.

If not, there is a map J' : {y1,...,y-} = {1,...,|w'|} such that
(W', I'UT) e .

The elements of the image of J' that correspond to positions within w} induce a
factorization of w;. Since w; =5 w} for each 4, there also exists a factorization of
w; such that the corresponding factors are =,.-equivalent. These factorizations
of the w;, together with the map J', serve to define a map J : {y1,...,y,} —
{1,...,|w|}. Because of the =-equivalence of the factors, and the multiplicative
property of = (noted earlier in 4.2) the resulting structure (w, I U J) satisfies
all the same modular formulas of quantifier depth d and modulus dividing m as
(w',I'UJ"), and therefore (w, IUJ) does not satisfy ¥, a contradiction. We thus
have

w' = 3z - - Iz Vyy - -V,

and so L is a union of products, as claimed.

We denote by ¢ Gy, the pseudovariety generated by the syntactic monoids of
concatenations of regular languages whose syntactic monoids are solvable groups.
Each 22,-class is a regular language whose syntactic monoid belongs to ¢Ggyy.
From results of Margolis and Pin (see, for example, Pin [12]) we have

<>G}sol =Jx Gsol - DA Gsola
and thus L € Pol(DA * G,;). But since we also have L € II,[M OD], we have
L € Pol(DA x G,,) N CoPol(DA x Ggp).

It now follows (using results of Pin, Straubing and Thérien [13] and Pin and
Weil [14] cited earler, and Lemma 4) that

M(L) € LI (DA x G,y)
=LI Y (LI (I % Gyor))
=LI '(J; *G,n)
= DA % G-

7.3 Gjo-extendibility

The biggest question left unanswered by our work is whether one can effectively
determine if a given regular language is definable by a two-variable sentence.
It follows from our arguments that L C X* is two-variable definable if and
only if for every regular J-class J of M (L), J admits a block partition of the
kind described in Section 5, and the set {m; : s € M} of partial one-to-one
transformations on the set of B-blocks of J is Gg,-extendible. In fact, we are
able to prove:

Theorem 12. The following two decision problems are equivalent: (a) To de-
termine whether a given regular language is two-variable definable. (b) To de-
termine whether a given set of partial one-to-one functions on a finite set is
Go1-extendible.

Proof. First suppose that we have an algorithm to determine whether a given
set of partial one-to-one maps of a finite set X to itself is Gy, -extendible. Let
L be a regular language, given by a finite automaton that recognizes it. We can
effectively compute the multiplication table of the syntactic monoid M of L. We
can also calculate the regular J-classes M, and determine whether they satisfy
the condition that we found in the proof of Lemma 8: If e, f are idempotents
in J, and ef € J, then ef is idempotent. If some regular J-class fails to
satisfy this condition, then M ¢ DA % G, and hence, by Theorem 3, L is not
two-variable definable. Otherwise, the partitions associated with each regular
J-class, as described in Lemma 8, exist, and we can calculate them and the
associated sets of partial injective functions. We now apply our algorithm for
G o-extendibility: If one of these sets fails to be extendible, then M ¢ DAxG,y,
so by Theorem 3, L is not two-variable definable. Otherwise, we have all the
properties we needed to prove parts (b) and (c¢) of Lemma 9 and to carry through
the argument in Section 6, so we conclude that L is two-variable definable.

For the converse, suppose that we have an algorithm to decide whether a
given regular language is two-variable definable. It follow from Theorem 3 and
standard techniques that there is then an algorithm to test whether a given finite
monoid is in DA % Gg,;. We will now use this algorithm to test whether a given
set F of partial one-to-one maps on a finite set X is Gg,-extendible.

We associate to F the directed graph with vertex set X and edge set {(z,zf) :
x € dom(f)}. We may assume without loss of generality that this graph is con-
nected in the undirected sense: Easily, F is extendible to a solvable permutation
group if and only if the restriction of F to each of its connected components is
extendible.

Let < F > denote the monoid of partial one-to-one functions on X generated
by F: F is extendible to a solvable permutation group G if and only if < F >,
considered as a set of partial one-to-one maps, is extendible to G.

We now define a new monoid M (F). The underlying set of M(F) is the
disjoint union of < F > with the Rees matrix semigroup (X, X,{1},I), where
{1} denotes the trivial group, and I the | X| x |X| identity matrix. Both < F >
and (X, X,{1},I) embed as subsemigroups of M (F); it remains to define the
product of an element of one of these subsemigroups with an element of the
other: If f € M(F) and (z,1,y) € (X, X, {1},I), then

(z,Ly)f = (z,1,4f),
if yf is defined, and 0 otherwise;
flz,1,y) = (&f ", 1,y)

if f~1 is defined, and 0 otherwise. It is straightforward to verify that this
multiplication is associative.

We claim that F is G,,-extendible if and only if M (F) € DA * G,,;. First,
suppose that F is extendible to a solvable permutation group G. The nonzero
elements of (X, X, {1}, I) for a regular J-class J of M (F). The associated set F’
of partial one-to-one maps on the set of B-blocks of J consists of the elements
of F, together with the partial maps fgy, =,y € X, where

wlfzy =Y,

if z = 2', and where f,, is undefined otherwise. Our condition on the connect-
edness of the graph associated with F implies that X C XG. Thus every map
in f,, is extendible to a permutation in G, and so F' is extendible to G as well.
What about the other [J-classes of M (F)? They all lie in the submonoid < F > .
We showed in our proof of part (b) of Lemma 9 that M(F) € J1 x Gy, and
hence by part (a) of the same lemma, each of these [J-classes is G s,-extendible.
Since every J-class of M (F) is Ggg-extendible, our arguments in Section 6
show that every language recognized by M (F) is two-variable definable, and
hence M (F) € DA x Gy,

Conversely, suppose M (F) € DA x G- By part (a) of Lemma 9, the set of
partial one-to-one maps on the blocks of the regular J-class J is Gy-extendible.
Since F is contained in this set of maps, F is G-extendible as well.

There is no algorithm presently known for determining if a given set F of
partial one-to-one maps on a finite set X is G,y -extendible. It is tempting to
conjecture that F is extendible if and only if the monoid of partial one-to-one
maps generated by F contains only solvable groups. We suspect this conjecture
is false. To disprove it, one would have to exhibit a solvable monoid of partial
one-to-one maps on a finite set and show that it cannot be extended to a solvable
permutation group. While it is easy to come up with candidate counterexamples,
we do not yet know how to prove non-extendibility.

Margolis, Sapir and Weil [10] show that if H is a pseudovariety of groups such
that H* H = H (G, has this property) then the question of H-extendibility
is equivalent to the problem of computing the closure of a finitely-generated
subgroup of the free group in the profinite topology induced by H. Ribes and
Zaleskii [16] showed that this problem is decidable for the pseudovariety G, of
p-groups for a fixed prime p. As a consequence we have

Theorem 13. Let p be prime. It is decidable whether a given regular language
is definable by a two-variable sentence in which all the modular quantifiers are
of modulus p.

Proof. There is really nothing new to prove here—we simply note that we could
redo our entire argument using the pseudovariety G, of p-groups in place of the
solvable groups. The crucial facts are that sentences whose only modular quan-
tifiers are of modulus p define the languages whose syntactic monoids contain
only groups in G, (see [24]), and that G, * G, = G,.

7.4 Connections with computational complexity

We suspect that our results have a connection to computational complexity the-
ory, in particular to the structure of classes within the polynomial-time hierarchy,
and within polynomial space.

Let C be a class of languages over a finite alphabet X. (In discussions of
computational complexity, we usually take X = {0,1}.) We define several oper-
ators on language classes: Let Q be a quantifier, either existential, universal, or
modular. We define Q - C to be the class of languages L for which there exist a
polynomial p and a language K € C such that

we L& Qu(z e 571D Awz € K).

We define the class BP - C to be the class of languages for which there exist a
polynomial p and language K € C as above, and such that

{z € ZP(vD . w € L & wr € K} S 2
| Zp(lw))| =3

Let P be the class of polynomial-time recognizable languages. With this notation,
3- P is the class NP, and V - P is the class co — N'P. The class

Ua-wk-r

k>0

is the polynomial-time hierarchy PH. The class 3! md 2

written &P.

There is a notion of polynomial-time recognizability of languages by finite
monoids, which we now describe. (See Hertrampf, et. al. [5] for an an account of
the equivalent notion of “leaf languages”.) Let M be a finite monoid, X C M, p
a polynomial, and f : ¥* — M a polynomial-time computable function. We say
(M, X, p, f) recognizes the language

{we X" (H f(we)) € X},

lz|=p(|wl])

- P is more commonly

where the order of multiplication in the above product is the lexicographic or-
der on TP We also say in this case that this language is polynomial-time
recognized by M. It is known, for example, that L € PSPACE if and only if L
is polynomial-time recognized by some finite monoid, and that L € PH if and
only if L is recognized in this sense by a finite aperiodic monoid.
Toda [29] showed
PH C BP-oP.

It then follows, using results of Schoning [17], that
PHCVY-3-@PN3-V-@P.

This last result can be interpreted algebraically: There is a fized finite aperi-
odic monoid A such that every language polynomial-time recognized by a finite

aperiodic monoid is recognized by A o Zs. (See Straubing [22] for an account of
this based on circuit complexity.) There is nothing special about the modulus 2
here— any modulus greater than 1 would work just as well.

There are some striking similarities between these results (and their proofs)
and our work on DA x Gg,. First, both illustrate the unexpected power of
modular counting to efficiently perform computations that can be done, more
cumbersomely, without modular counting. Second, the complexity class

V-3-ePN3-V-0P

bears an obvious resemblance to the class Z2[MOD] N II,[MOD] that we dis-
cussed in 7.2. Moreover, Toda’s theorem is proved, in part, by demonstrating
that the modular quantifier operator can be moved past the BP operator, much
as we showed in 4.1 that modular quantifiers can be moved past ordinary quan-
tifiers in two-variable formulas. We would like to find the algebraic principles
underlying these similarities. We make the following conjecture:
Conjecture. If L € PH then L is polynomial-time recognized by a monoid in
DA x G,y

In fact, the same intuition suggests that this conclusion holds whenever L is
polynomial-time recognized by a finite solvable monoid.
Acknowledgements. We would like to thank Stuart Margolis for his very help-
ful comments, and Benjamin Steinberg for pointing out the reference [19]. The
second author’s research was supported by grants from NSERC and FCAR, and
by the von Humboldt Foundation.

References

1. J. Almeida, “A Syntactical Proof of the Locality of DA” | International Journal of
Algebra and Computation 6 (1996) 165-178.

2. D. Beauquier and J. E. Pin, “Factors of Words”, Proc. 16th ICALP, Springer
Lecture Notes in Computer Science 372 (1989) 63-79.

3. S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New
York, 1976.

4. K. Etessami, M. Vardi, and T. Wilke, “First-Order Logic with Two Variables and
Unary Temporal Logic”, Proceedings, 12th IEEE Symposium on Logic in Computer
Science, 228-235 (1996).

5. U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wagner, “On the
Power of Polynomial-Time Bit Reductions”, Proc. 8th IEEE Conference on Struc-
ture in Complezity Theory (1993) 200-207.

6. N. Immerman, Descriptive Complezity, Springer, New York, 1999.

7. N. Immerman and D. Kozen, “Definability with a Bounded Number of Bound
Variables”, Information and Computation, 83, 121-139 (1989).

8. J. Kamp, Tense Logic and the Theory of Linear Order, Ph. D. thesis, UCLA (1968).

9. R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge,
Massachusetts, 1971.

10. S. Margolis, M. Sapir, and P. Weil, “Closed Subgroups in Pro-V Topologies and
the Extension Problem for Inverse Automata”, preprint.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

J. E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

J.E. Pin, “BG = PG: A Success Story” in J. Fountain, ed., Semigroups, Formal
Languages and Groups, Kluwer Academic Publishers, Dordrecht (1995) 33-48.
J.E. Pin, H. Straubing and D. Thérien, “Locally Trivial Categories and Unambigu-
ous Concatenation”, J. Pure and Applied Algebra 52 (1988) 297-311.

J. E. Pin and P. Weil, “Polynomial Closure and Unambiguous Product”, Theory
Comput. Systems 30 (1997) 383-422.

J. Rhodes and B. Tilson, “The Kernel of Monoid Morphisms”, J. Pure and Applied
Algebra 62 (1989) 227-268.

L. Ribes and P. Zaleskii, “The pro-p topology of a free group and algorithmic prob-
lems in semigroups, International Journal of Algebra and Computation 4 (1994)
359-374.

U. Schéning, “Probablilistic Complexity Classes”, J. Comp. Syst. Sci. 39 (1989)
84-100.

M. P. Schiitzenberger, “Sur le Produit de Concatenation Non-ambigu”, Semigroup
Forum 13 (1976), 47-76.

B. Steinberg, “Finite state automata: a geometric approach, Trans. Amer. Math.
Soc. 353 (2001) 3409-3464.

P. Stiffler, “Extensions of the Fundamental Theorem of Finite Semigroups”, Ad-
vances in Mathematics, 11 159-209 (1973).

H. Straubing, Finite Automata, Formal Languages, and Circuit Complezity,
Birkhiuser, Boston, 1994.

H. Straubing, “When Can One Finite Monoid Simulate Another” in J.C. Birget,
S. Margolis, J. Meakin and M. Sapir, eds., Algorithmic Problems in Groups and
Semigroups, Birkhaiiser, Boston (2000) 267-288.

H. Straubing, “Families of recognizable sets corresponding to certain varieties of
finite monoids”, Journal of Pure and Applied Algebra 15 (1979), 305-318.

H. Straubing, D. Thérien, and W. Thomas, “Regular Languages Defined by Gen-
eralized Quantifiers”, Information and Computation 118 289-301 (1995).

D. Thérien, “Classification of Finite Monoids: the Language Approach” Theor.
Comput. Sci. 14 (1981) 195-208.

D. Thérien and T. Wilke, “Over Words, Two Variables are as Powerful as One
Quantifier Alternation,” Proc. 80th ACM Symposium on the Theory of Computing
256-263 (1998).

W. Thomas, “Classifying Regular Events in Symbolic Logic”, J. Computer and
System Sciences 25 (1982) 360-376.

B. Tilson, “Categories as Algebra”,J. Pure and Applied Algebra 48 (1987) 83-198.
S. Toda, “PP is as Hard as the Polynomial-Time Hierarchy”, SIAM J. Computing
20 (1991) 865-877.

T. Wilke, “Classifying Discrete Temporal Properties”, Habilitationsschrift, Uni-
versity of Kiel, 1998.

