
Prof. Sergio A. Alvarez http://www.cs.bc.edu/∼alvarez/
Fulton Hall 410–B alvarez@cs.bc.edu
Computer Science Department voice: (617) 552-4333
Boston College fax: (617) 552-6790
Chestnut Hill, MA 02467 USA

CS383, Algorithms
Notes on Asymptotic Time Complexity

We discuss basic concepts related to measuring and comparing the time efficiency of algorithms.

1 Growth Rates; Asymptotic Notation

We introduce notation that expresses the rate of growth of a real-valued function f : N → R over
the set of natural numbers. Such functions will later be used to describe the time required by an
algorithm to complete its computation.

1.1 Big O

Let f and g be real-valued functions over the set of natural numbers, with g(n) > 0 for all n. We
say that “f is big O of g” and write

f(n) = O(g(n))

if there exists a real constant C (independent of n) such that

f(n) ≤ Cg(n) for all n

Thus, f is big O of g if f is bounded above by a constant multiple of g. Intuitively, f(n) = O(g(n))
means that f grows no faster than g as the index n grows. For example, the function f(n) = n2 is
big O of the function g(n) = n3, while it is not true that g is big O of f in this case. Every function
is big O of itself.

The requirement that the inequality in the above definition of big O hold for all values of n is
sometimes relaxed so that it only need apply for all n ≥ n0, for some number n0. This requirement
is superfluous if g(n) > 0 for all n, because if f(n) ≤ Cg(n) for all n ≥ n0, one can ensure that
f(n) ≤ C ′g(n) for the few remaining values n = 0...n0−1 by enlarging the constant C to C ′ if need
be: just pick C ′ to be as large as the largest of the n0 values f(0)/g(0)...f(n0 − 1)/g(n0 − 1) (and
no smaller than the original value of C).

Examples.

1. np = O(nq) whenever 0 < p ≤ q. Proof. This follows from the fact that np ≤ nq for all n ≥ 0
if 0 < p ≤ q. Thus, the requirement in the definition of big O is satisfied with C = 1.

2. np = O(bn) for any p > 0 and b > 0. In words: polynomials grow slower than exponentials.
Proof. This is a little trickier. We will show that

lim
n→∞

np

bn
= 0

1



Before we compute the limit, let’s ask: would that be enough? Suppose for argument’s sake
that we knew the limit to be 0. That would imply in particular that there is some value n0

such that
np

bn
≤ 1 for all n ≥ n0

This would immediately satisfy the definition of big O as desired. With that guarantee in
mind, we proceed to compute the limit. The limit is of the form∞/∞, so we apply L’Hôpital’s
rule from calculus, which states that the limit in this situation is the same as the limit of
the ratio of the derivatives of the numerator and denominator, where the argument, n, is
interpreted as a continuous real variable. Rewriting bn in terms of the natural logarithm
base, e, we then find:

lim
n→∞

np

bn
= lim

n→∞

p np−1

ln b bn

Notice that the exponent in the numerator goes down by 1. Iterating this process of differen-
tiation, if necessary, we eventually arrive at a quotient for which the numerator has a negative
exponent and therefore approaches 0 as n approaches ∞. This proves that the limit is 0.

3. log n = O(np) for any p > 0. This is a good exercise. Follow the argument used in the pre-
ceding example. We’ll describe an alternate technique to deal with this and similar situations
below, at the end of this section.

1.2 Big Ω

Just as big O notation describes upper bounds on a function f(n), there is a notation designed to
describe lower bounds. We say that f(n) is big Omega of g(n), and write

f(n) = Ω(g(n)),

when there exists a real constant C > 0 such that

f(n) ≥ Cg(n) for all n

Notice that C must be strictly positive; otherwise, one could pick C = 0 and have a trivial lower
bound whenever f is non-negative, no matter what g is. Intuitively, f(n) = Ω(g(n)) means that f
grows asymptotically at least as fast as g does.

Exercise. Show that f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

1.3 Big Θ

Big Theta notation is used to describe pairs of functions that have equivalent asymptotic growth
rates. We say that f(n) is big Theta of g(n), and write

f(n) = Θ(g(n)),

when both f(n) = O(g(n)) and f(n) = Ω(g(n)) simultaneously.

Exercise. Write a direct definition of big Θ notation in terms of constants and inequalities, in
the spirit of the big O and big Ω definitions given above.

2



1.4 Finding asymptotic relationships through substitution

Consider the final example in the subsection on big O notation, above. We wish to show that

log n = O(np)

It is possible to do this by using the L’Hôpital’s rule argument that we used to show that

np = O(bn)

There is, however, a direct way to show that the latter bound is actually already contained in
the former as a special case. Start from the log n on the left hand side of the target bound. The
function here is inconvenient because we may not have proven any bounds for it up to this point.
So we simply declare the expression log n to be a new variable, u, thus eliminating the logarithm
altogether:

u = log n

We’ll need to rewrite the target bound in terms of the new variable. This requires expressing n in
terms of u, which, fortunately, is pretty easy:

n = 2u,

assuming that the logarithm is in base 2 (if it isn’t, just replace 2 with the appropriate base). The
target bound now becomes:

u = O(2up)

This is an asymptotic growth statement about a function of u. But notice that the latter big O
statement just compares a polynomial of u on the left (the simplest possible one) with an exponential
of u on the right. This is exactly the case that we already addressed using L’Hôpital’s rule before!
Therefore, we see that the target statement is true, merely by referring back to that previous result.

Substitution Rule. Here is a more general statement of the substitution trick that we used
above. Let f, g : R → R be two functions. Suppose there is a strictly increasing function φ : R+ →
R+ such that

f(φ−1(u)) ≤ Cg(φ−1(u))

for some finite constant C and all values of u in the range of φ. Then

f(n) = O(g(n))

Proof. Assume that φ is as in the statement. Then φ is invertible on its range because it is
one-to-one. Assume also that C is a finite constant such that

f(φ−1(u)) ≤ Cg(φ−1(u))

for all values of u in the range of φ. If n is any non-negative integer, let u = φ(n). Then the
preceding inequality becomes

f(n) ≤ Cg(n)

which shows that
f(n) = O(g(n)),

as desired.

3



Exercise. Use the substitution trick to compare the asymptotic growth rates of the functions
log nlog n and n2.

2 Time Complexity

Speed is a central issue in the study of algorithms. Actual time spent by a program as it performs
a particular computation is a key concern. However, the time may depend on factors other than
algorithm design, including the programming language used to implement the algorithm and the
hardware on which the program is running. We discuss ways of measuring the intrinsic efficiency
of the underlying algorithm itself while abstracting away such details.

2.1 Computational tasks, instances

Every algorithm is intended to address a particular computational task. A computational task is
defined by its input-to-output specification: the collection of all pairs (x, y), where x is a possible
input to the algorithm and y a desired output of the algorithm on input x. Each such pair (x, y) is
an instance of the computational task. For example, if the computational task is sorting an array
of integers, then each instance consists of a pair (a, a′), where a is an array of integers and a′ is a
sorted permutation (rearrangement) of a.

Size of an instance. Not all instances are created equal in terms of difficulty. For example, one
would expect a random array to be harder to sort than one in which a single swap of two elements
would complete the task. At the most basic level, such relative difficulty is determined by the
size of the input objects (e.g., the length of the array to be sorted). We assume that a notion of
size is available for the computational task of interest in each case. The size could be the number
of elements of an array for a sorting task, or the number of digits of an integer in base 10 for a
primality test, or the number of cities to be visited for a traveling salesman problem. A basic goal
of complexity analysis will be to determine the computational cost of an algorithm as a function of
the size of the input instance.

2.2 Notions of time complexity

Fix a computational task, as well as a measure of the size of an instance of this task. For a
given algorithm that addresses the target task, we seek to measure the computational cost of the
algorithm as a function of the size of the input instance.

Basic computational steps. In order to make the complexity measure independent of imple-
mentation language and hardware platform details, we count the number of basic computational
steps required by a procedure. The notion of basic step is imprecise. However, in a given context
it should be such that one basic step requires approximately the same amount of processing time
independently of the size of the input instance. For example, evaluating a boolean expression is
a reasonable candidate for a basic computational step, as is assignment of a memory address to a
pointer variable, assuming that addresses are represented as memory words of a fixed size. Mak-
ing a copy of an array (as opposed to passing the array’s starting address) is a poor choice for a
basic computational step because the time required for copying can reasonably be expected to be
proportional to the length of the array, which is not independent of the size of the array.

4



Let A be an algorithm. For each input instance x, we denote by A(x) the result of running
algorithm A on input x; the pair (x,A(x)) should be one of the pairs that appear in the input-
output specification of the target computational task for the algorithm. We denote by t(x → A(x))
the number of basic computational steps taken by A in computing the result A(x) on input x.

2.2.1 Worst-case time complexity

The worst-case time complexity of algorithm A is the function t̄A : N → N that counts the maximum
possible number of basic computational steps used by A for an input of a given size:

t̄A(n) = max
size(x)=n

t(x → A(x))

2.2.2 Average time complexity

Worst-case complexity provides an upper bound on the cost of processing inputs of a given size.
However, the number of steps required by “typical” input instances may be considerably less. An
example is the task of searching for a value in an unordered list of length n. If the target value does
not appear on the list, all n list elements will be examined during the search. On the other hand,
if the target value does appear on the list, then the number of steps required will depend on the
target value’s position within the list. The number of elements examined will range from 1 if the
target appears at the very beginning of the list, to n, if it appears at the very end. In the absence
of additional information, it is reasonable to assume that all such situations are equally likely to
occur. On average, the number of elements examined will be roughly n/2. In this case, this average
is of order n, just like the worst-case complexity. We will see that there are algorithms for which
the average complexity has a lower asymptotic growth rate than the worst case complexity.

The average time complexity of A is the function t̃A : N → N that counts the average possible
number of basic computational steps used by A for an input of a given size. Assume that a
probability distribution on the set of input instances is specified, so that the relative likelihoods
of different input instances is known. The running time of A on input x may then be seen as a
random variable. The average time complexity of algorithm A (with respect to the input probability
distribution) is the average value of that random variable:

t̃A(n) = Esize(x)=nt(x → A(x))

The letter E here stands for expectation, which is the term that probabilists use for the average
value of a random variable.

2.3 Examples of time complexity analysis

1. Algorithm 1 is an example of an algorithm for which the worst case and average case com-
plexities have different asymptotic growth rates. We take the length of the input array to be
the measure of instance size in terms of which the time complexity is to be expressed.

In the worst case, algorithm 1 will perform n passes through the while loop before returning a
value. We assume that the comparison i ≤ n takes time proportional to the number of digits
of n, which is Θ(log n), that the parity check on a[i] takes time Θ(1), and that incrementing i
by 1, as a special case of addition, takes time Θ(log i). Summing over all values of i between
1 and n, this yields a total time Θ(n log n) in the worst case.

5



Algorithm 1: First Odd Array Element
Input: An array of integers a[1...n].
Output: The smallest integer index value i such that a[i] is odd if a contains at
least one odd value; the value n + 1 otherwise.
indexOfFirstOdd(a)
(1) i = 1
(2) while i ≤ n and a[i] is even
(3) i = i + 1
(4) return i

On the other hand, assuming that odd and even elements are equally likely to occur, only
two positions will need to be examined on average before the algorithm finds an odd element
and returns a value. The comparisons 1 ≤ a and 2 ≤ n may reasonably be assumed to take
time Θ(1) (even if n is very large, efficient comparison will proceed from the most significant
digit downward, which will yield an answer immediately). Thus, the algorithm’s average case
time complexity is Θ(1).

2. The time complexity of a recursive algorithm can often be bounded by bounding the recursion
depth and then bounding the number of steps spent at each level of the recursion. We illustrate
this approach by analyzing the following algorithm.

Algorithm 2: Divide and Conquer Modular Exponentiation
Input: A real number b and integers p ≥ 0 and n > 1.
Output: The result bp of multiplying p copies of b together (mod n).
recPow(b, p, n)
(1) if p equals 0 then return 1
(2) q = recPow(b, bp/2c, n)
(3) if p is even then return q ∗ q (mod n)
(4) else return b ∗ q ∗ q (mod n)

First, let’s agree on a notion of size for the input instances. The inputs are numbers, so we’ll
use the number of digits as a measure of size. For real numbers, we assume that we are using
finite precision approximations, and count the number of significant digits (or bits) in these
approximations. We let d denote the largest number of digits among the three inputs.

We bound the recursion depth in terms of the number of digits, d. Since the value of p is
divided by 2 with each recursive call (in integer arithmetic), and since the base case occurs
when p equals 0, the recursion depth is the smallest value k∗ of k that satisfies

p

2k
< 1

This value equals
k∗ = b1 + log2 pc

To see this, consider first the case in which p is a power of 2, p = 2m. An induction argument
in the exponent m proves the above expression in this case. In the general case, p is between
two powers of 2, and the recursion depth is the same as for the lower of these two powers.
This shows that the recursion depth is Θ(log p), or, equivalently, Θ(d).

6



We now bound the number of steps per level of the recursion. Either one or two multiplications
are carried out depending on whether the exponent is even or odd. This takes time O(d2),
assuming that the “standard grade school algorithm” is used for multiplication. Likewise,
computation of modular remainders may be completed in time O(d2) as discussed in class. We
assume that division of p by 2 takes time O(d) because of the underlying binary representation
at the machine level. Finally, evaluation of the boolean expressions, assignments, return
statements, and parameter passing can all be assumed to take time O(d). Therefore, the
total time at each level is O(d2).

Combining the above bounds on the recursion depth and the time complexity per level, we
conclude that the total time complexity of the recursive exponentiation algorithm is O(d3).
Both the worst case and average case complexities satisfy the O(d3) upper bound. The bound
on the recursion depth in the preceding analysis a tight one: Θ(d). We loosened our grip only
in analyzing the work per level. The dominant time is associated with multiplication. The
reason for having used a big O bound for the multiplication time rather than a big Θ bound
is that there are certain “easy” cases for multiplication, namely multiplication by powers of
2, which can be dealt with by linear time hardware operations if binary representation is used
at the machine level.

7


