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ABSTRACT
Chi squared analysis is useful in determining the sta-
tistical significance level of association rules. We show
that the chi squared statistic of a rule may be computed
directly from the values of confidence, support, and lift
(interest) of the rule in question. Our results facilitate
pruning of rule sets obtained using standard association
rule mining techniques, allow identification of statisti-
cally significant rules that may have been overlooked by
the mining algorithm, and provide an analytical descrip-
tion of the relationship between confidence and support
in terms of chi–squared and lift.

1. INTRODUCTION
An association rule is a rule of the form

A⇒ B (1)

where A and B are itemsets, that is, sets of items that
appear in a database of transactions. This terminology
is that of “market basket” analysis; each transaction
itemset represents the set of items that are purchased
together in a single retail transaction. An association
rule such as that in Eq. 1 is meant to represent the
statement that transactions that contain the itemset A
are likely to also contain the itemset B, at least within
a particular database of transactions. Association rules
have been widely used within data mining since the de-
velopment of the famous Apriori association rule min-
ing algorithm [1], [2]. Various evaluation measures have
been proposed to assess the degree to which an associ-

ation rule applies to or is of interest in a given context.
See [11] for a review and further references. Confidence
and support are the most commonly used measures in
part because of their central role in the Apriori algo-
rithm. In [4], it is shown that the best rules according
to many other measures can be found among those that
lie along an upper “confidence–support border”.

Despite the abundance of alternative evaluation mea-
sures, chi-squared analysis, a classical technique in statis-
tics for determining the closeness of two probability dis-
tributions, continues to be one of the most widely used
tools for statistical significance testing in many scientific
circles, e.g. bioinformatics [7, 9]. It was suggested in [5]
that chi-squared analysis be used to assess the statistical
significance level of the dependence between antecedent
and consequent in association rules. [5] also describes a
mining algorithm that uses chi-square significance levels
to prune the search for itemsets during mining. It has
been acknowledged that the chi-square statistic does not
by itself measure the strength of the dependence of the
antecedent and consequent of a rule, and that an ad-
ditional measure (such as confidence) is needed for this
purpose; [5] uses the interest (also known as lift) asso-
ciated with individual cells in the contingency table of
the antecedent and consequent. Using chi-squared anal-
ysis to prune the set of mined rules was proposed in [8],
where lift is again used as a measure of dependence for
individual cells of the contingency tables.

Contributions of this paper
In the present paper we observe that the value of the
chi-squared statistic for the itemset pair (A,B) viewed
as a pair of binary–valued random variables may in fact
be calculated directly in terms of the standard measures
of confidence, support, and lift of the single rule A⇒ B.
We express the values of the four cells of the observed
and expected contingency tables for (A,B) in terms of
the values of these three measures for a single cell, and
find a closed–form expression for the chi-square statistic



in terms of these values. Our results allow the statistical
significance of associations to be estimated after mining
has been completed using a standard mining algorithm,
as long as the values of support, confidence, and lift of
the mined rules are available. Also, generation of rule
variants with improved lift values becomes possible. Fi-
nally, we are able to give an analytical description of the
relationship between confidence and support with chi–
squared and lift as parameters. We show in particular
that a confidence–support tradeoff occurs for confidence
values greater than a threshold value which we express
in closed form. Our results extend to any set of three
independent measures that are sufficient to describe the
probabilities of all boolean combinations of two events
A and B. We present related results involving classical
information retrieval measures in [3].

Relation to previous work
We briefly discuss the differences between the treatment
of chi-squared analysis in the present paper as compared
with the papers [5], [8], [4].

First, [5] addresses the use of chi-squared significance
levels in the mining process itself, while we focus on
computing chi-squared levels independently of mining,
e.g. for use in post–pruning. In computing the chi-
square statistic in [5], the authors separately consider
each of the items that appear in a rule, which leads
to high–dimensional contingency tables (one dimension
per item). Here, we instead aggregate the items of the
antecedent and the items of the consequent separately,
and consider the resulting two–dimensional contingency
tables. This allows us to draw conclusions based on
aggregate values that would be available from a stan-
dard association rule mining algorithm. Also, the use
of lower dimensional tables makes it less likely that the
expected cell values will be small enough to violate the
assumptions required for validity of chi–squared signifi-
cance testing.

[8] addresses the use of chi–squared analysis for prun-
ing the rule set and finding a set of representative rules
after mining, and appears to rely on two–dimensional
contingency tables (the latter point is not completely
clear in [8]). However, like [5], [8] also presents the lift
as a measure that must be computed independently of
the chi-squared statistic, and separately for each cell of
the contingency table, in order to measure the strength
of the dependence among all possible boolean combina-
tions of the variables present in a rule. Neither [5] nor [8]
offer insights or results regarding a possible connection
between the chi-squared statistic and other metrics used
for mining. In contrast, we focus on this very issue. We
show that the chi–squared statistic may be expressed
directly as a function of confidence, support, and lift of
the single original rule A⇒ B, and indeed of any three
metrics that uniquely determine the probabilities of the
four boolean combinations of two events.

[4] studies monotonicity of various evaluation measures
relative to the partial order ≤sc defined on the set of

rules by the support and confidence measures jointly:

R ≤sc S ≡ supp(R) ≤ supp(S) and conf(R) ≤ conf(S)

They point out that the chi–squared statistic is not
monotonic relative to this partial order, exhibiting in-
stead a “switching behavior” at a critical confidence
value. The analysis in [4] uses an expression for chi–
squared as a convex function of support and confidence
(see Appendix A in [4]). However, this expression also
depends on the confidence value of the rules A⇒ B and
∅ ⇒ B, not just that of the original rule A ⇒ B. [4]
does not provide analytical relationships among mea-
sures for a given rule, focusing instead on convexity
properties. This yields existence results (such as the
existence of a switching point for the confidence) but
falls short of providing the precise quantitative infor-
mation that becomes available through the analytical
results of the present paper.

2. CHI-SQUARED ANALYSIS
Consider two binary–valued random variables A and B.
Chi–square analysis is a standard statistical technique
that allows one to gauge the degree of dependence be-
tween the variables A and B; see, e.g. [6], pages 154–161.
In this section we outline this approach.

2.1 Contingency tables
Computing the chi-square statistic for the pair of vari-
ables (A,B) requires constructing two contingency ta-
bles. The observed contingency table for (A,B) has four
cells, corresponding to the four possible boolean combi-
nations of A, B. The value in each cell is the number of
observations (samples) that match the boolean combi-
nation for that cell. These values may be expressed in
terms of the total number of samples n and of the ob-
served relative frequencies (probabilities) corresponding
to the four boolean combinations as shown in Table 1.

Table 1: Observed contingency table for (A,B)

B B

A n P (A ∩B) n P (A ∩B)

A n P (A ∩B) n P (A ∩B)

Chi-square analysis dictates that the observed contin-
gency table should be compared with that which would
be obtained asymptotically as n→∞ if the variables A
and B were statistically independent. The latter table
is shown in Table 2.

Table 2: Expected contingency table for (A,B)

B B
A n P (A) P (B) n P (A) (1− P (B))

A n (1− P (A)) P (B) n (1− P (A)) (1− P (B))



2.2 The chi-squared statistic
The chi square statistic is defined in terms of the en-
tries of the observed contingency table (Table 1) and
the expected contingency table (Table 2) as follows.

χ2 =
∑

0≤i,j≤1

(observedi,j − expectedi,j)2

expectedi,j
, (2)

Thus, χ2 represents a summed normalized square devi-
ation of the observed values from the corresponding ex-
pected values. Statistical significance levels correspond-
ing to specific χ2 values may be found in tables of the χ2

distribution. Here, we are dealing with binary–valued
attributes and so the number of degrees of freedom is 1.
A summary table of the χ2 distribution with 1 degree
of freedom containing minimum χ2 values for selected
significance levels appears in Table 3.

Table 3: Selected χ2 significance levels
Tail probability .10 .05 .025 .01

Min. χ2 2.706 3.841 5.024 6.635

For example, Table 3 shows that a chi-squared value of
6 has a significance level better than .025. This means
that the residual probability that a chi-squared value of
6 would be observed if the underlying variables are ac-
tually independent is less than .025. We note that chi–
squared significance levels are actually a large sample
approximation. Validity of the chi–squared test requires
that the cells of the expected contingency table (Ta-
ble 2) contain values greater than 5; otherwise, Fisher’s
exact test may be needed in order to obtain accurate
significance values.

3. CHI-SQUARED AS A FUNCTION OF
CONFIDENCE, SUPPORT, AND LIFT

The statistical significance of an association rule may be
gauged through chi-square analysis. In the approach to
this problem presented in [5], the presence or absence of
each item that appears in a rule is viewed as a random
variable. This requires one dimension for each item,
leading to high–dimensional contingency tables. Here,
we adopt an alternate approach. For a rule A ⇒ B,
we aggregate the items of the antecedent A and, sepa-
rately, the items of the consequent B. In other words,
we view the boolean product over each of these item-
sets as a single binary–valued random variable. This
allows us to deal with two–dimensional contingency ta-
bles regardless of the number of items that appear in a
rule. One advantage of using lower–dimensional tables
is that it becomes easier to achieve the minimum cell
counts required for validity of chi–squared analysis.

In this section we show how to express the values that
appear in the contingency tables associated with the
pair (A,B) consisting of (the boolean products over) the
antecedent and consequent of the rule A⇒ B in terms
of the standard association rule measures of confidence

(conf), support (supp), and lift (also known as interest)
of the rule A ⇒ B. The basic observation is that the
probabilities of the various events in the boolean algebra
generated by A and B may be expressed in terms of con-
fidence, support, and lift (see Lemma 3.1). We focus on
these particular measures because they are widely used.
However, our results extend to any set of three mea-
sures the collective values of which uniquely determine
the probabilities of all boolean combinations of the two
variables A and B.

Lemma 3.1. The values of support, confidence, and
lift of the rule A ⇒ B satisfy the following identities
(whenever the denominators are nonzero):

P (A ∩B) = supp

P (A) =
supp

conf

P (B) =
conf

lift

(3)

Proof. The proof is straightforward, using the following
definitions of the three measures: 1

conf =
P (A ∩B)

P (A)

supp = P (A ∩B)

lift =
P (A ∩B)

P (A)P (B)

(4)

Theorem 3.2. The contingency tables for the pair of
binary random variables (A,B) corresponding to the as-
sociation rule A ⇒ B are given in terms of the confi-
dence, support, and lift of this rule as shown in Tables 4
and 5. We assume here that conf is nonzero.

Table 4: Observed contingency table for A⇒ B

B B
A n supp n supp

conf
(1− conf)

A n ( conf
lift
− supp) n (1− supp

conf
(1− conf)− conf

lift
)

Table 5: Expected contingency table for A⇒ B
B B

A n supp
lift

n supp
conf

(1− conf
lift

)

A n (1− supp
conf

) conf
lift

n (1− supp
conf

)(1− conf
lift

)

Proof. We observe that Lemma 3.1 allows us to ex-
press the probabilities that appear in the observed con-
tingency table (Table 1) and the expected contingency

1Note that the definition of lift used here coincides with
that used in [4]; an extra n factor appears in [4] because
they use the term support for the number of transac-
tions that support a given rule rather than the percent-
age of such transactions in the database.



table (Table 2) in terms of the confidence, support, and
lift of the rule A ⇒ B. This is because the probabili-
ties in Eq. 3 uniquely determine the probabilities of all
boolean combinations of A and B. In particular, we
have the following identities:

P (A ∩B) = supp

P (A ∩B) = P (A)− P (A ∩B)

=
supp

conf
− supp

P (A ∩B) = P (B)− P (A ∩B)

=
conf

lift
− supp

P (A ∩B) = 1− P (A ∩B)− P (A ∩B)− P (A ∩B)

= 1− supp

conf
− conf

lift
+ supp

(5)
The identities of Eq. 5 provide expressions for all of
the cells of the observed contingency table (Table 1)
in terms of the confidence, support, and lift of the rule
A⇒ B. Substituting these expressions into Table 1 and
simplifying them, we obtain Table 4, which is equiv-
alent to Table 1. The entries of the expected contin-
gency table (Table 2) may similarly be re-expressed in
terms of the confidence, support, and lift of the under-
lying rule A ⇒ B as shown in Table 5. All expressions
shown are valid when the denominators are nonzero;
since lift ≥ conf , it is sufficient that conf be nonzero.
This completes the proof of Theorem 3.2.

Note.
Although Theorem 3.2 as stated above expresses the
contingency table entries in terms of confidence, sup-
port, and lift, the proof of Theorem 3.2 shows that an
analogous result will be obtained for any set of mea-
sures which determine the probabilities of all boolean
combinations of A and B. In fact, it is clear that the
analog of Eq. 3 suffices in order to obtain all cells of the
contingency tables in terms of a given set of measures.

4. EXACT CHI-SQUARED FORMULA
We will now obtain a closed–form expression for the
chi-squared statistic of Eq. 2 in terms of the confidence,
support, and lift of the single rule A ⇒ B. Comments
on limiting cases of the expression are provided after-
wards.

Theorem 4.1. The chi-square statistic of Eq. 2 satis-
fies the following equality (whenever the expression on
the right-hand side is well defined). 2

χ2 = n (lift− 1)2 supp conf

(conf − supp) (lift− conf)
(6)

Proof. A simple calculation using the expressions in
Tables 4 and 5 shows that the numerator term in Eq. 2

2The denominator in Eq. 6 is non-negative by Eq. 4, but
is zero for rules A⇒ B such that A and B are mutually
exclusive or one of A, B appears in all transactions.

is the same for all four cell positions. This is due to
the fact that the marginals, that is, the row and column
sums, must be the same in both tables. In fact, for all
values of i, j we have:

(observedi,j − expectedi,j)2 = n2supp2

(
lift− 1

lift

)2

(7)
We may now compute the chi-square statistic as in Eq. 2,
by using respectively Eq. 7 for the numerators in Eq. 2
and the appropriate cell expressions in Table 5 for the
denominators in Eq. 2. The result is a product:

χ2 = n supp2

(
lift− 1

lift

)2



lift

supp
+

conf

supp

lift

lift− conf

+
lift

conf

conf

conf − supp

+
conf lift

(conf − supp) (lift− conf)


(8)

After some manipulation, the large parenthesized sum
factor in Eq. 8 reduces to the following expression:

lift2 conf

supp (lift− conf) (conf − supp) (9)

Replacing the parenthesized sum in Eq. 8 by the equiv-
alent expression of Eq. 9 leads to the desired result in
Eq. 6, and the proof of Theorem 4.1 is complete.

Corollary 4.2. The chi-square statistic is bounded above
as shown in Eq. 10.

χ2 ≤ n (lift− 1)
supp conf

conf − supp (10)

Proof. Since conf ≤ 1, the bound in Eq. 10 follows
from Eq. 6 by replacing the factor lift − conf in the
denominator by lift− 1.

We may also extract from Theorem 4.1 an expression
for the χ2 value of a rule in terms of lift and of the odds
ratios of the antecedent and consequent. This expres-
sion, shown in Eq. 11, is equivalent to the relationship
between χ2 and the φ coefficient that we discuss and
provide an independent proof of in Appendix A.

Corollary 4.3.

χ2(A⇒ B) = n (lift−1)2 P (A)P (B)

(1− P (A))(1− P (B))
(11)

Proof. If we express all terms in the fraction on the
right-hand side of Eq. 6 in terms of supp, we find for
supp 6= 0:

χ2 = n (lift− 1)2
supp supp

P (A)(
supp
P (A)

− supp
)(

supp
P (A)P (B)

− supp
P (A)

) ,
(12)



Simplification of Eq. 12 yields Eq. 11. Although we
derived Eq. 11 assuming that supp 6= 0, the resulting
expression is valid even when supp = 0.

Indeed, letting p = P (A) and q = P (B) denote the
probabilities of mutually exclusive events A and B, a
direct calculation shows that the correct χ2 value is:

χ2 = n
pq

(1− p)(1− q) , (13)

which agrees with Eq. 11 since (lift − 1)2 = 1 when
supp = 0.

Singular cases in Theorem 4.1
Theorem 4.1 describes a relation among the four vari-
ables χ2/n, conf , supp, and lift. At most points of the
four–dimensional space defined by these variables, Eq. 6
constitutes a single–dimensional constraint that leaves
three remaining degrees of freedom for the four vari-
ables. However, according to the implicit function the-
orem from multivariable calculus (e.g. [10]), this ideal
situation breaks down at the singular points at which
the gradient vector of the right-hand side of Eq. 6 viewed
as a mapping from the three variables conf , supp, lift
to the real numbers is zero. We find the singular points
of Eq. 6 in Lemma 4.4 below. We will need this result
in section 6, where we explore the relationship between
confidence and support.

Lemma 4.4. The singular points of Eq. 6 are those for
which lift = 0, 1.

Proof. The proof of Lemma 4.4 reduces to calculat-
ing the three partial derivatives of the right-hand side
of Eq. 6 and then setting them simultaneously equal
to zero. This calculation is straightforward but some-
what lengthy, so we omit the details. We will note only
that the quadratic factor (lift − 1)2 in Eq. 6 leads to
a singularity when lift = 1. The other singular points
are associated with the simultaneous satisfaction of the
conditions conf = supp and lift = conf . This occurs
when lift = 0 (A and B mutually exclusive) and also
when P (A) = P (B) = 1. Note that lift = 1 in the
latter case.

5. INCREASING RULE LIFT
Our results in Theorems 3.2 and 4.1 can be used in at
least the following two ways in order to improve the
output of a standard association rule mining algorithm:

1. For ruleset pruning

2. To identify additional rules with higher lift

Since the first of these applications is perhaps obvious,
we will comment only on the second.

Notice first that the χ2 significance level of all “boolean
variants” A ⇒ B, A ⇒ B, A ⇒ B of a given rule

A⇒ B is exactly the same as that of the original rule.
This is because by the definition in Eq. 2, the χ2 statis-
tic is an aggregate value based on all cells of the ob-
served and expected contingency tables for the pair of
random variables associated with the antecedent and
consequent of the rule. 3 Therefore, all of the boolean
variants can be considered to have similar statistical sig-
nificance; they may be ranked according to correlation
strength as measured by lift. Nonetheless, it is possible
for one of the three boolean variants of a given rule to
have greater lift than the original rule, but smaller sup-
port. If the rule mining algorithm at hand fits within
the support/confidence framework, and more generally
unless lift is used as a criterion in guiding the search for
rules, the mining process may miss some of these rules
entirely. In this section we will describe one situation in
which this phenomenon can occur. Details concerning
a second situation appear in Appendix B of this paper.

Theorem 5.1. Suppose that the rule A⇒ B satisfies

lift(A⇒ B) < 1

conf(A⇒ B) > 0.5
(14)

Then the rule A⇒ B with negated consequent satisfies:

lift(A⇒ B) =
1− conf
1− conf

lift

> 1

supp(A⇒ B) =
supp

conf
(1− conf) < supp(A⇒ B)

(15)

Proof of Theorem 5.1. The lift of the rule A ⇒ B
equals

lift(A⇒ B) =
P (A ∩B)

P (A)P (B)
=

1− conf
1− conf

lift

, (16)

where we have used Theorem 3.2 to rewrite the proba-
bilities in terms of the confidence, support, and lift of
the original rule A ⇒ B. Eq. 16 shows that the rule
A ⇒ B will have lift greater than 1 if the lift of the
latter is less than 1. This proves the first half of Eq. 15.

By Theorem 3.2, the support of the new rule A⇒ B is
given in terms of the support of the original rule by:

supp(A⇒ B) =
supp

conf
(1− conf) (17)

The above quantity is less than supp if conf is greater
than 0.5. This completes the proof.

5.1 Comments
We note the following points in connection with Theo-
rem 5.1.

1. If a rule A ⇒ B found by a mining algorithm
such as Apriori satisfies the assumptions of The-
orem 5.1, then its boolean variation A ⇒ B may

3It is also possible to prove by a direct but laborious
calculation that Eq. 6 yields exactly the same χ2 values
for all boolean variants of the rule A⇒ B.



well be overlooked during mining because by Eq. 15
the support of the latter rule may fall below the
minimum support threshold used for mining. By
Eq. 15, the missed rule has greater lift than the
corresponding rule found by the mining algorithm
in this case.

2. Eq. 15 allows one to recover the lift and support
values of the rule A ⇒ B if this rule is missed
by the mining algorithm, using only information
about the original rule A⇒ B. We note that the
confidence value of the rule A ⇒ B may be simi-
larly expressed using the appropriate identities in
Eq. 5. Namely, the confidences of the two rules
are complementary:

conf(A⇒ B) + conf(A⇒ B) = 1 (18)

Example 5.1. Assume that the original rule A ⇒ B
satisfies:

conf = 0.6, supp = 0.2, lift = 0.8 (19)

We note that for the specific values given in Eq. 19,
and assuming that the number of training instances is
n = 100, Theorem 4.1 shows that the chi-squared statis-
tic for the rules A ⇒ B and A ⇒ B in this case is
χ2 = 6, which corresponds to a significance level (resid-
ual probability) better than .025 according to Table 3.

Substituting the values given in Eq. 19 into Eq. 15 shows
that the lift of the rule A ⇒ B here is 1.6, which ex-
ceeds that of the original rule by a significant margin.
However, by Eq. 15 the support of the new rule is only
0.133 and may fall below the minimum support thresh-
old used for mining; if so, it will be missed by a mining
algorithm such as Apriori.

Example 5.2. In order to obtain an experimental il-
lustration of the fact that a standard mining algorithm
can fail to find some rules with significant lift, we ran
the Apriori algorithm as implemented in the Weka sys-
tem [12], using the Weather dataset provided with Weka.
The minimum support level for mining was set at 0.2,
which requires a support count of 3 or greater for this
dataset. We note that the small size of this dataset (14
instances) leads to small χ2 values for many of the rules.
However, the phenomenon illustrated by this example
extends to larger datasets.

1. Apriori found the rule:

outlook = rainy ⇒ play = yes

(supp = 3/14, conf = .6, lift = .93)

However, because of the minimum support con-
straint, Apriori missed the following higher lift
variation of the above rule in which the consequent
has been negated:

outlook = rainy => play = no

(supp = 2/14, conf = .4, lift = 1.13)

2. Apriori found the rule

play = yes => outlook = rainy

(supp = 3/14, conf = .33, lift = .93)

Complementing the consequent yields the follow-
ing disjunctive rule which has higher lift:

play = yes => outlook = sunny or overcast

(supp = 6/14, conf = .67, lift = 1.04)

The latter rule was of course not found by Apriori
because of its disjunctive form. The closest rule
that Apriori could find is:

play = yes => outlook = overcast

(supp = 4/14, conf = .44, lift = 1.56)

Notice that this rule found by Apriori has lower
confidence than the rule with the full disjunction
in the consequent, which Apriori did not find.

5.2 Discussion
Theorem 5.1 allows one to compensate for mining omis-
sions such as those illustrated in the above examples.
Indeed, one need only carry out the lift computations for
the boolean variant A ⇒ B of each mined rule A ⇒ B
with lift less than 1, as in Eq. 15. This can be done after
mining is complete. Any missed variants with signifi-
cant lift values may be recovered in this way. We note,
however, that such rules will have low confidence un-
less the minimum confidence threshold is set low during
mining. This is because the confidence values of the two
rules involved are complementary as shown in Eq. 18.
Thus, this technique may be useful mainly in situations
such as scientific discovery (e.g. [7, 9]) in which a sig-
nificant lift value can be more important than high rule
confidence.

6. ANALYTICAL DESCRIPTION
OF THE RELATION BETWEEN
CONFIDENCE AND SUPPORT

The very elegant paper [4] shows that the minimal rules
mined according to several evaluation measures lie along
an “upper confidence/support border”. This border ex-
hibits a tradeoff between support and confidence. How-
ever, the precise dependence between support and con-
fidence along the border will depend on the statistics of
the database and may be difficult to quantify in gen-
eral; [4] contains no analytical results in this regard.

The results of the present paper allow us to say more
about the relation between support and confidence for
sets of rules that satisfy constraints on the values of
other evaluation measures. For example, the result in
Theorem 4.1 may be viewed as a relation between sup-
port and confidence, with χ2/n and lift as parameters.
If these parameters are held fixed, the resulting relation
describes a curve in the support/confidence plane, as
long as one stays away from the singular points of Eq. 6
as identified in Lemma 4.4.



By solving for the support in Eq. 6, we can find the
dependence of support on confidence explicitly.

Lemma 6.1. If lift 6= 0, 1, then supp may be expressed
in terms of conf as follows: 4

supp =
conf ∗ (lift− conf)(

n(lift−1)2

χ2 − 1
)
conf + lift

(20)

Eq. 20 expresses the support analytically as an explicit
function of confidence with χ2/n and lift as parameters.
An example plot of Eq. 20 produced in MATLAB using
the values n = 100, χ2 = 6, lift = 2.5 is shown in
Fig. 1. Fig. 1 shows a tradeoff (inverse relationship)

Figure 1: Support/confidence relationship

between confidence and support for confidence values
above 40% or so. For smaller values of the confidence,
a direct relationship between support and confidence
is observed; in the latter case, higher confidence at the
same χ2 significance level would be obtained by negating
the consequent of the rule.

Our results enable us to show that the change from a
direct to an inverse relationship between confidence and
support observed in Fig. 1 occurs in general, and we
are able to determine precisely where this change takes
place. We summarize this result in Theorem 6.2, which
we prove in Appendix C. We exclude the case χ2/n = 1
in the statement of Theorem 6.2 because in the presence
of the constraint lift 6= 0 it would only allow rules of
the form A⇒ A and therefore would force conf = 1.

Theorem 6.2. Assume that χ2/n 6= 1 and lift 6= 0, 1
are fixed. Then support is a downward concave func-
tion of confidence on the interval 0 < conf < 1, with a

4If lift = 1, then χ2/n = 0 in Eq. 6, and supp can-
not be determined from the remaining parameter conf .
Indeed, if A and B are independent, with P (A) = p,
P (B) = q, then supp(A⇒ B) = pq, conf(A⇒ B) = q.

unique maximum at the following value conf∗.

conf∗ =
lift

1 +
√

n(lift−1)2

χ2

(21)

Example 6.1. For instance, using the values n = 100,
χ2 = 6, lift = 2.5 associated with Fig. 1, Theorem 6.2
yields to three digits:

conf∗ = .351,

which certainly agrees with Fig. 1.

The existence as demonstrated above of a confidence
value that separates regions of monotonicity and anti–
monotonicity of the support as a function of the confi-
dence is related to the fact (see [4]) that the chi–squared
statistic exhibits a similar “switching” behavior relative
to the partial order ≤sc described in [4] (see the discus-
sion of related work in the Introduction of the present
paper). As shown above, our results allow us to quan-
tify such phenomena precisely in terms of the values of
standard evaluation measures for a single rule A⇒ B.

7. CONCLUSIONS
Chi-squared analysis is known to be useful in assessing
the statistical significance of association rules. Previous
work in this direction has either viewed the chi-squared
statistic as being independent of other measures used
to evaluate rules, or has relied on measures for several
related rules in addition to the rule of interest. We have
shown that all values contained in the two–dimensional
contingency tables needed for computation of the chi-
squared statistic may in fact be directly computed from
the confidence, support, and lift values of the associa-
tion rule in question, and we have presented a closed–
form expression for the chi-squared statistic in terms
of these three widely used measures. This allows easy
computation of chi-squared values after mining, facili-
tates pruning of the mined rule set based on statisti-
cal significance, provides a way of recovering rules with
significant lift values that may have been missed by a
standard mining algorithm, and enables an analytical
description of the confidence–support relationship with
chi–squared and lift levels as parameters. In particular,
we prove that a tradeoff between confidence and support
occurs for confidence values above a certain threshold if
chi–squared and lift are held constant, and we provide
the value of this threshold in closed form. Our results
extend easily to other sets of measures that collectively
determine the probabilities P (A), P (B), and P (A ∩B)
for a given association rule A⇒ B.
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APPENDIX
A. CHI–SQUARED AND PHI
In this appendix we describe the close relationship that
exists between the chi–squared statistic and the phi co-
efficient, a normalized directional measure of associa-
tion that has previously been used in data mining (see
e.g. [11]). The relationship between the two measures is
well known to statisticians but appears not to be widely
recognized in the data mining community.

The phi coefficient for two binary random variables A
and B is defined as follows.

φ =
P (A ∩B)− P (A)P (B)√

P (A)P (B)(1− P (A))(1− P (B))
(22)

The phi coefficient of Eq. 22 is exactly the same as the
Pearson correlation coefficient for a large sample dis-
tributed according to the given joint probability distri-
bution (note that the denominator of Eq. 22 is precisely
the product of the standard deviations of the variables
A and B). It follows in particular that the phi coefficient
takes values between −1 and +1.

The numerator of the phi coefficient in Eq. 22 may be
expressed in terms of the determinant of the observed
contingency table O(A,B) for the variables A and B
(Table 1).

Lemma A.1.

P (A ∩B)− P (A)P (B) =
1

n2
detO(A,B) (23)

Proof. The result follows easily by using the identities:

P (A ∩B) = P (A)− P (A ∩B)

P (A ∩B) = P (B)− P (A ∩B)

P (A ∩B) = 1− (P (A) + P (B)− P (A ∩B)),

to express each of the cells of Table 1 in terms of P (A),
P (B), and P (A ∩ B), before computing the numerator
of Eq. 22.

We will use Eq. 23 in the proof of the following result,
which shows that χ2 and φ are very closely related.

Theorem A.2.

χ2

n
= φ2 (24)

Proof. We will expand the left-hand side of Eq. 24
and show that it reduces to the phi coefficient on the
right-hand side.

First write the observed contingency table (Table 1) in
the notation shown in Table 6.

In this notation, the expected contingency table (Ta-
ble 2) is as shown in Table 7.



Table 6: Observed contingency table for (A,B)

B B
A a b

A c d

Table 7: Expected contingency table for (A,B)

B B
A 1

n
(a+ b)(a+ c) 1

n
(a+ b)(b+ d)

A 1
n

(c+ d)(a+ c) 1
n

(c+ d)(b+ d)

Using the definition of the chi–squared statistic (Eq. 2),
we now obtain:

χ2

n
=

1

n

∑
0≤i,j≤1

(observedi,j − expectedi,j)2

expectedi,j

=
((a+ b)(a+ c)− na)2

n2(a+ b)(a+ c)
+

((a+ b)(b+ d)− nb)2

n2(a+ b)(b+ d)

+
((c+ d)(a+ c)− nc)2

n2(c+ d)(a+ c)
+

((c+ d)(b+ d)− nd)2

n2(c+ d)(b+ d)
(25)

Expand the squares in Eq. 25 and collect like terms:

χ2

n
=

(a+ b)(a+ c)

n2
+

(a+ b)(b+ d)

n2

+
(c+ d)(a+ c)

n2
+

(c+ d)(b+ d)

n2

− 2

n
(a+ b+ c+ d)

+
a2

(a+ b)(a+ c)
+

b2

(a+ b)(b+ d)

+
c2

(c+ d)(a+ c)
+

d2

(c+ d)(b+ d)

=
1

n2
(a+ b+ c+ d)2

− 2

n
(a+ b+ c+ d)

+
a2(b+ d)(c+ d) + b2(a+ c)(c+ d)

(a+ b)(a+ c)(b+ d)(c+ d)

+
c2(a+ b)(b+ d) + d2(a+ b)(a+ c)

(a+ b)(a+ c)(b+ d)(c+ d)

(26)

Since the sum a + b + c + d of all the entries in each
contingency table is the total number of instances n,
Eq. 26 simplifies as follows, where all terms have been
expressed relative to a common denominator:

χ2

n
= − (a+ b)(a+ c)(b+ d)(c+ d)

(a+ b)(a+ c)(b+ d)(c+ d)

+
a2(b+ d)(c+ d) + b2(a+ c)(c+ d)

(a+ b)(a+ c)(b+ d)(c+ d)

+
c2(a+ b)(b+ d) + d2(a+ b)(a+ c)

(a+ b)(a+ c)(b+ d)(c+ d)

(27)

We expand the numerator of the initial negative term

in Eq. 27 and use the result to cancel parts of the pos-
itive terms that follow it. For example, notice that the
numerator of the negative term includes the quantity
a2(b + d)(c + d) as a summand, and that the latter
exactly cancels the first half of the numerator of the
first positive term in Eq. 27. At the end of this long
cancelation and simplification process we arrive at the
following:

χ2

n
=

(ad− bc)2

(a+ b)(a+ c)(b+ d)(c+ d)
(28)

The numerator in Eq. 28 is the square of the determi-
nant of the observed contingency table, while the de-
nominator is n4 times the product of the marginals.
Thus, in light of the determinant identity for the φ co-
efficient in Eq. 23, we see that Eq. 28 is equivalent to
Eq. 24. This completes the proof of the Theorem.

B. MORE ON FINDING RULES
WITH INCREASED LIFT

We continue our discussion from section 5 concerning
rules with high lift that may be overlooked by a min-
ing algorithm operating within the support/confidence
framework and that may be recovered after mining using
the results of the present paper. Theorem 5.1 identified
one situation in which this may occur. Another situ-
ation in which a significant rule may be missed by the
mining algorithm due to low support is described by the
following result.

Theorem B.1. Suppose that the rule A⇒ B satisfies

lift(A⇒ B) > 1 (29)

In order for the boolean variant A ⇒ B (with negated
antecedent and consequent) to have increased lift and
reduced support as follows:

lift(A⇒ B) > lift(A⇒ B)

supp(A⇒ B) < supp(A⇒ B)
(30)

it is necessary and sufficient that the following quadratic
inequality hold:

conf2 − lift conf + lift supp > 0 (31)

Furthermore, it is sufficient that either one of the fol-
lowing two conditions hold:

conf(A⇒ B) > lift(A⇒ B) − supp(A⇒ B)

lift(A⇒ B) < 4 supp(A⇒ B)
(32)

Proof. Using Theorem 3.2, we express the lift and
support of the new rule A ⇒ B in terms of the values
conf , supp, and lift of the three basic measures for the



original rule A⇒ B:

supp(A⇒ B)

= 1− supp

conf
(1− conf)− conf

lift

lift(A⇒ B)

=
1− supp

conf
(1− conf)− conf

lift

(1− supp
conf

)(1− conf
lift

)

(33)

Since we wish to compare the lift and support of the
new rule with the corresponding values for the original
rule A ⇒ B, we subtract the appropriate value from
each of the quantities in Eq. 33 above. After some sim-
plification, we obtain the following results:

supp(A⇒ B) − supp

= − conf2 − lift conf + supp lift

conf lift

lift(A⇒ B) − lift

=
(conf2 − lift conf + supp lift)(lift− 1)

(conf − supp) (lift− conf)

(34)

Both denominators in Eq. 34 are positive, as is the term
lift−1 because of Eq. 29, so the signs of the two differ-
ences are determined by that of the quadratic term in
the numerator, which they share (note, however, that
the supp expression in Eq. 34 has an extra leading mi-
nus sign). This term is precisely the expression that
which appears in Eq. 31. This proves the first claim of
the Theorem.

In order to obtain sufficient conditions for Eq. 31 to
hold, we observe first that the quadratic numerator ex-
pression that appears in Eq. 34 is positive when conf is
at positive or negative infinity. The roots of the expres-
sion are given by:

conf =
1

2

(
lift ±

√
lift2 − 4 lift supp

)
=
lift

2

(
1 ±

√
1 − 4

supp

lift

) (35)

Assume first that the expression inside the square root
in Eq. 35 is negative. This occurs when the second con-
dition in Eq. 32 holds. Then the quadratic expression
in Eq. 31 is positive for all values of conf , which shows
that the second condition in Eq. 32 is sufficient for the
new rule to have increased lift and reduced support as
claimed.

Now assume that the expression inside the square root
in Eq. 35 is positive or zero. Because of the downward
convexity of the graph of the square root function, we
have the following inequality valid for all x such that the
argument inside the square root below is non-negative:

√
1 + 2x ≤ 1 + x (36)

Using Eq. 36 in Eq. 35, we see that the two roots in
Eq. 35 lie inside the interval with the following end-

points:

conf =
lift

2

(
1 ±

(
1 − 2

supp

lift

))
= {supp, lift− supp}

(37)

Because of the positivity of the quadratic expression at
positive and negative infinity, this implies that it is suffi-
cient to have either conf < supp or conf > lift− supp.
The first of these two conditions is impossible. The sec-
ond, however, may occur, and corresponds exactly to
the first condition that appears in Eq. 32. This con-
dition is therefore sufficient for the new rule to have
increased lift and reduced support. This completes the
proof of the Theorem.

C. THE SUPPORT/CONFIDENCE
RELATIONSHIP

We provide a proof of the concavity of the graph of
support as a function of confidence and of the expression
for the unique maximum point of this graph as stated
in Theorem 6.2.

Proof of Theorem 6.2. Partial differentiation of Eq. 20
with the parameters χ2/n and lift held constant yields:

∂supp

∂conf
=

−

(
n(lift−1)2

χ2 − 1
)
conf2 + 2 lift conf − lift2((

n(lift−1)2

χ2 − 1
)
conf + lift

)2

(38)
Since lift 6= 0, 1, the expression inside the outer square
in the denominator is strictly greater than lift − conf
and by Eq. 4 is therefore strictly positive on the interval
0 < conf < 1.

In order to determine the concavity of the graph of sup-
port as a function of confidence, we differentiate Eq. 38.
Direct calculation yields Eq. 39.

1

2

∂2supp

∂conf2
= −

n lift2(lift−1)2

χ2((
n(lift−1)2

χ2 − 1
)
conf + lift

)3

(39)
The quantity on the right-hand side of Eq. 39 is negative
for lift 6= 1, which proves that the graph of support as a
function of confidence is concave downward as claimed.

The concavity of the graph on the interval 0 < conf < 1
implies that it has at most one maximum point in that
interval. We will show that there is indeed a maximum
point and we will determine its location. A maximum
point will occur at a value of conf for which the deriva-
tive in Eq. 38 is zero. Since the denominator of Eq. 38
is strictly positive on the interval 0 < conf < 1, this
will occur precisely at a root of the numerator.

The numerator of Eq. 38 is quadratic in the confidence,



with two roots given by:

conf =
lift

n(lift−1)2

χ2 − 1

(
−1 ±

√
n(lift− 1)2

χ2

)
(40)

By using the factorization identity a2−b2 = (a+b)(a−b)
in Eq. 40, we obtain the following simplified expression
for the roots:

conf =
lift

1 ±
√

n(lift−1)2

χ2

(41)

The fact that the derivative in Eq. 38 has two roots
instead of one may at first seem to contradict the con-
cavity of the graph of support as a function of confi-
dence. That this is not the case is due to the fact that
exactly one of the two roots will lie inside the interval
0 < conf < 1. This fact, stated as Lemma C.1 below,
completes the proof of Theorem 6.2.

Lemma C.1. In Eq. 41, the value

conf∗ =
lift

1 +
√

n(lift−1)2

χ2

(42)

lies in the open interval 0 < conf < 1, but the value

conf∗∗ =
lift

1 −
√

n(lift−1)2

χ2

(43)

does not; in fact, conf∗∗ lies outside the closed interval
0 ≤ conf ≤ 1.

Proof of Lemma C.1. Using the relationship between
χ2/n and the φ coefficient described in Appendix A, we
rewrite the roots in Eq. 42 and Eq. 43 as follows:

conf+ =
lift

1 + (lift−1)
|φ|

=
1

1
lift

+ 1
|φ| −

1
lift |φ|

conf− =
lift

1 − (lift−1)
|φ|

=
1

1
lift
− 1
|φ| + 1

lift |φ|

(44)

Note that since by convention the square root in Eq. 42
and Eq. 43 is positive, the root conf∗ will be either
conf+ or conf− depending on the sign of lift− 1:

conf∗ =

{
conf+ if lift > 1

conf− if lift < 1
(45)

Recall that φ may be interpreted as a Pearson correla-
tion and therefore takes values between −1 and +1. Its
absolute value |φ| takes values between 0 and 1. Since
we assume that lift 6= 1, we exclude the value φ = 0
which occurs only when the antecedent and consequent
are independent. Because of Theorem A.2, the state-
ment of Theorem 6.2 also excludes the values φ = ±1.
Therefore, we have 0 < |φ| < 1 in the present context.

We now consider two cases, depending on whether the
lift of the rule is greater than 1 or less than 1.

1. If lift > 1, then 1/lift < 1, and taking into ac-
count also that 1/|φ| > 1 here, the reciprocals of
the roots satisfy:

1

conf+
=

1

lift
+

1

|φ|

(
1− 1

lift

)
>

1

lift
+

(
1− 1

lift

)
= 1

1

conf−
=

1

lift

(
1 +

1

|φ|

)
− 1

|φ|

<

(
1 +

1

|φ|

)
− 1

|φ|
= 1

(46)

It follows from Eq. 46 that conf+ lies in the in-
terval 0 < conf < 1 in this case and that conf−

lies outside the closed interval 0 ≤ conf ≤ 1. By
Eq. 45, this proves the statement of Lemma C.1 in
this case.

2. If lift < 1, then 1/lift > 1, and taking into ac-
count also that 1/|φ| > 1, the reciprocals of the
roots satisfy:

1

conf+
=

1

lift
+

1

|φ|

(
1− 1

lift

)
<

1

lift
+

(
1− 1

lift

)
= 1

1

conf−
=

1

lift

(
1 +

1

|φ|

)
− 1

|φ|

>

(
1 +

1

|φ|

)
− 1

|φ|
= 1

(47)

By Eq. 47 that the roles of the two roots have been
reversed: conf− lies inside the open interval 0 <
conf < 1 in this case and conf+ lies outside the
closed interval 0 ≤ conf ≤ 1. However, note that
the root that lies inside the open interval is conf∗

in this case as well, by Eq. 45. This completes the
proof of Lemma C.1.


