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Gaussian RBF Centered Kernel Alignment (CKA)
in the Large-Bandwidth Limit

Sergio A. Alvarez

Abstract—Centered kernel alignment (CKA), also known as centered kernel-target alignment, is useful as a similarity measure between
kernels and as a kernel-based similarity measure between feature representations. We prove that CKA based on a Gaussian RBF kernel
converges to linear CKA in the large-bandwidth limit. The result relies on mean-centering of the feature maps and on a Hilbert-Schmidt
Independence Criterion (HSIC) identity. We show that convergence onset is sensitive to the geometry of the feature representations, and
that a notion of representation eccentricity, ρ, constrains the bandwidth range for which Gaussian CKA can differ noticeably from linear
CKA. Our experimental results suggest that Gaussian bandwidths less than ρ should be selected in order to enable nonlinear modeling.

Index Terms—Nonlinear kernels, neural networks, representations, similarity.

✦

1 INTRODUCTION

C ENTERED Kernel Alignment (CKA) was first proposed
as a measure of similarity between kernels in the

context of kernel learning [1], [2], building on prior work
on (non-centered) kernel-target alignment [3]. Versions for
functional data of CKA and the associated Hilbert-Schmidt
Independence Criterion (HSIC) were proposed later [4]. CKA
has been used for multiple kernel learning (e.g., [5], [6]).
CKA also enables measuring similarity between two fea-
ture representations of a set of data examples (e.g., two
sets of neural network activation vectors), by comparing
kernel-based similarity matrices (Gram matrices) of these
representations [7]. Used in the latter manner, CKA and
alternatives such as canonical correlation analysis (CCA)
and orthogonal Procrustes distance [8] can provide insight
into the relationship between architectural features of a
network such as width and depth, and the network’s learned
representations [7], [9]. CKA has been used to assess repre-
sentation similarity in cross-lingual language models [10] and
recurrent neural network dynamics [11], to identify potential
drug side-effects [12], to differentiate among brain activity
patterns [13], and to gauge the representational effects of
watermarking [14], among others.

Any positive-definite symmetric kernel can be used as
the base kernel for CKA, including linear, polynomial, and
Gaussian radial basis function (RBF) kernels. Gaussian RBF
kernels are of special interest due to their universality
properties [15], which can lead to superior modeling of
arbitrary nonlinearities. Understanding the behavior of CKA
with Gaussian kernels is, therefore, relevant to its use as
a representational similarity metric. Some prior work [7]
reports finding little difference empirically between CKA
similarity values based on Gaussian and linear kernels.
In contrast, hyperparameter tuning experiments for [16]
suggest that a noticeable difference can occur between
CKA values for Gaussian and linear kernels, but also that
the difference becomes negligible as Gaussian bandwidth
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grows. We establish the latter phenomenon theoretically in
the present paper, proving that Gaussian CKA converges
to linear CKA as bandwidth approaches infinity, for all
representations. We describe the convergence rate, as well.

We are not aware of published results on the large-
bandwidth asymptotics of Gaussian CKA. A limit result for
Gaussian kernel SVM classification appeared in [17], but rests
on an analysis of the dual maximum-margin optimization
problem that does not translate directly to kernel CKA.

While we find that approximation of Gaussian RBF CKA
by linear CKA for large bandwidths becomes apparent by
elementary means, the result relies on centering of the feature
maps (and on Hilbert-Schmidt Independence Criterion prop-
erties that we also prove). Indeed, we show that a similar
result fails for the non-centered kernel-target alignment of [3].
We also show that a geometric measure of representation
eccentricity controls convergence of Gaussian to linear CKA,
and bounds the range of bandwidths for which Gaussian
and linear CKA differ for a given representation. This can be
helpful in data-adaptive Gaussian bandwidth selection.

2 BACKGROUND AND NOTATION

Our perspective is that of measuring similarity between two
feature representations of the same set of data examples. We
briefly review the basic ingredients and notation related to
kernel similarity and CKA below (see [7], [2]).

2.1 Feature representations
X ∈ RN×p and Y ∈ RN×q will denote matrices of p-
dimensional (resp., q-dimensional) feature vectors for the
same set of N data examples. Each row of X or Y consists
of the feature vector for one of these examples. We use
subindices to indicate the rows of X and Y (e.g., xi, yi).

2.2 Kernel similarity
Linear similarity between feature encodings X , Y can be
expressed as similarity of their “similarity structures” (within-
encoding dot product matrices) XXT , Y Y T [7]:

∥Y TX∥2F = tr
(
XXTY Y T

)
, (1)
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where ∥ ∥F is the Frobenius norm and tr is the trace
function. The left-hand side reflects similarity of the feature
representations; the right-hand side reflects similarity of their
respective self-similarity matrices.

CKA (defined in section 2.3) corresponds to a normalized
version of Eq. 1, extended to kernel similarity by replacing
XXT and Y Y T by Gram matrices K(X) = (k(xi, xj))i,j
and L(Y ) = (l(yi, yj))i,j for two positive semi-definite
symmetric kernel functions, k and l. The bars indicate that
columns have been mean-centered [18], [2]; see section 2.5.

Gram matrix entries can be viewed as inner products
of the embedded images of the data examples in a high-
dimensional reproducing kernel Hilbert space (RKHS) [19].
Thus, kernels allow modeling aspects of representations not
easily accessible to the linear version.

2.3 HSIC and CKA
The kernel similarity perspective applied to Eq. 1 yields the
Hilbert-Schmidt Independence Criterion (HSIC) [18] shown
in Eq. 2, where N denotes the number of data examples, and
the dependence on X and Y has been hidden for economy
of notation. Mean-centering of the Gram matrices is assumed
to have been carried out as described in section 2.5, below.

HSIC(K,L) =
1

(N − 1)2
tr
(
K L

)
(2)

CKA (Eq. 3) is a normalized version of HSIC. It takes values
in the interval [0, 1] if the kernel is positive semi-definite;
see [2]. While this does not apply directly to CKA based on
the Euclidean pseudo-kernel of Eq. 4, below, our Corollary 1
shows that CKA takes values in [0, 1] in that case, also.

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) HSIC(L,L)
(3)

2.4 Kernels and Gram matrices
We consider Gram matrices K = (k(xi, xj))i,j and L =
(l(yi, yj))i,j , where k(u, v) and l(u, v) denote positive semi-
definite (p.d.) symmetric kernel functions. We focus on linear
and Gaussian RBF kernels; a Euclidean pseudo-kernel (which
is only conditionally p.d. [19]; see Theorem 6 of [20]) also
proves to be useful. See Eq. 4, where · is dot product and | | is
Euclidean norm. Gram matrices have size N ×N , regardless
of the dimensionality of the feature representation.

Linear Klin = (xi · xj)i,j

Gaussian, bandwidth σ KG(σ) =

(
e

−|xi−xj |
2

2σ2

)
i,j

(4)

Euclidean (conditionally p.d.) KE =

(
−|xi − xj |2

2

)
i,j

Note on scaling of distances in Gaussian Gram matrices:
Following the heuristic of [21] (also [7]), we use σX = dXσ
instead of σ in Eq. 4 when computing the Gaussian Gram
matrix KG(σ)(X), where dX is the median distance between
rows of X . This ensures invariance of Gaussian HSIC under
isotropic scaling [7], making σ itself “nondimensional”. The
value σ = 2, for instance, denotes an actual bandwidth
σX = 2dX of twice the median distance between examples.

2.5 Mean-centering
Mean-centering the Gram matrices in Eq. 2 and Eq. 3 is
crucial both for kernel learning [2] and for the results in this
paper. Mean-centering of the Gram matrices corresponds to
centering the embedded features in the RKHS, as considered
in early work on kernel PCA [22].

We default to column mean-centering, that is, we ensure
that each column has mean zero. Thus, we multiply by the
centering matrix, H , on the left as in Eq. 5a (where IN is the
N ×N identity matrix and 11T is an N ×N matrix of ones),
with individual entries as in Eq. 5b. For row mean-centering,
H would multiply from the right and the k summation
would range over columns instead of rows.

K = HK, where H = IN − 1

N
11T (5a)

Ki,j = Ki,j −
1

N

N∑
k=1

Kk,j (5b)

Our results hold for mean-centering of either rows or
columns, and for simultaneous centering of both. The latter
case [2] involves multiplication by H on both sides in Eq. 5a;
two terms are added to the right in Eq. 5b, corresponding to
subtracting 1/N times the column-sum of the current Eq. 5b.

3 CONVERGENCE PROOF AND DERIVATION OF A
BANDWIDTH-SELECTION HEURISTIC

We prove convergence of Gaussian CKA to linear CKA
for large bandwidths in section 3.1, and provide a data-
dependent criterion that bounds the range of Gaussian band-
widths for which nonlinear behavior occurs, in Section 3.2.

3.1 Linear CKA approximation of Gaussian RBF CKA
Our main result is Theorem 1. We focus on the case in which
only one of the two Gram matrix parameters uses a Gaussian
RBF kernel with bandwidth σ → ∞, as doing so leads to
cleaner proofs; the other, L, is assumed to be any fixed,
positive-definite symmetric kernel. The result holds equally
if both Gram matrices are Gaussian with bandwidths ap-
proaching infinity (see Appendix in Supplemental Material).

Theorem 1. CKA(KG(σ), L) = CKA(Klin, L)+O
(

1
σ2

)
as σ →

∞. In particular, CKA(KG(σ), L) converges to CKA(Klin, L) as
σ → ∞. The result also holds if both kernels are Gaussian RBF
kernels; in that case, the limit as both bandwidths approach infinity
is CKA(Klin, Llin) (i.e., it is CKA(Klin(X),Klin(Y ))).

We prove Theorem 1 by showing first, in Lemma 1, that
Gaussian CKA converges to Euclidean CKA as σ → ∞, and
then, as a Corollary to the HSIC identity of Lemma 2, that
Euclidean CKA and linear CKA are identical.

Note: Our results rely on mean-centering of features in
Eqs. 2, 3. Indeed, the analog of Theorem 1 does not hold
if, as in [3], features are not centered. This is easy to see by
direct calculation for the case in which X is the 2× 2 identity
and Y is a 2 × 2 of ones except for a single off-diagonal 0.
Linear CKA equals 3/

√
14 in that case, while Gaussian CKA

is 1 for all σ, as X and Y have identical distance matrices
after scaling by the median distances dX , dY as described in
the note in section 2.4. Details are provided in the Appendix.
Lemma 2 would likewise fail without mean-centering.
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Lemma 1. CKA(KG(σ), L) = CKA(KE , L) +O
(

1
σ2

)
as σ →

∞, for any positive-definite kernel, L.

The proof of Lemma 1 also includes a large-bandwidth
asymptotic result for Gaussian HSIC, in Eq. 10.

Proof of Lemma 1: Let αi,j = |xi − xj |. Also, let σX = dXσ,
where dX is the median pairwise distance between feature
vectors in X . Then, by Eq. 4 and Eq. 5b, the centered Gram
matrix KG(σ) has the entries shown in Eq. 6. Mean-centering
is an indispensable ingredient, as we will see.

KG(σ)i,j
= e

−
α2
i,j

2σ2
X − 1

N

N∑
k=1

e
−

α2
k,j

2σ2
X (6)

The argument uses the first-order series expansion of the
exponential function at the origin (Eq. 7).

e−u = 1− u+O(u2) as u → 0 (7)

Applying Eq. 7 to the exponential terms of Eq. 6 as σ → ∞,
the importance of mean-centering becomes apparent. Due
to subtraction of the sum for the column mean in Eq. 6, the
constant 1 terms in Eq. 7 cancel, leaving only the centered
Euclidean Gram matrix entries and higher-order terms:

KG(σ)i,j
= −

α2
i,j

2σ2
X

+
1

N

N∑
k=1

α2
k,j

2σ2
X

+O

(
1

σ4

)
(8)

The O
(

1
σ4

)
residual persists in the HSIC expression of Eq. 2:

(N − 1)2 HSIC(KG(σ), L) = tr
(
KG(σ)L

)
=

N∑
i=1

N∑
j=1

(
−

α2
i,j

2σ2
X

+
1

N

N∑
k=1

α2
k,j

2σ2
X

)
Lj,i + O

(
1

σ4

)
(9)

Multiplying by σ2
X/(N − 1)2, we obtain the connection

in Eq. 10 between HSIC(KG(σ), L) and HSIC(KE , L):

σ2
X HSIC(KG(σ), L) = HSIC(KE , L) + O

(
1

σ2

)
(10)

An identity analogous to Eq. 10 relates the CKA denominator
term HSIC(KG(σ),KG(σ)) to its Euclidean version. In the
latter case, the HSIC expression involves products of two
Gaussian Gram matrix entries of the sort in Eq. 8. The
resulting higher-order error terms are O( 1

σ6 ), because they
arise from a product of the O( 1

σ4 ) error term from one
Gram matrix entry by the O( 1

σ2 ) leading term in the other;
multiplication by σ4

X (or by σ2
X after taking the square root

of HSIC(KG(σ),KG(σ))) again yields a O( 1
σ2 ) residual.

Lemma 1 follows by dividing the HSIC term of Eq. 10 by
its analog in the denominator, to form CKA as in Eq. 3:

CKA(KG(σ), L) =
HSIC(KG(σ), L)√

HSIC(KG(σ),KG(σ))HSIC(L,L)

= CKA(KE , L) + O

(
1

σ2

)
(11)

The case of two Gaussian kernels with bandwidths ap-
proaching ∞ (whether equal to one another or not) follows
by considering one kernel argument at a time, freezing
the bandwidth of the other, and using the scalar triangle
inequality. Details appear in the Appendix. □

Lemma 2. HSIC(KE , L) = HSIC(Klin, L), for any L.

Proof: First, we show that the column-centered Gram matrix
entries KEi,j can be written as Klini,j + δi, where the δi term
depends only on the row, i, not the column, j:

KEi,j = −|xi − xj |2

2
+

1

N

N∑
k=1

|xk − xj |2

2

= −|xi|2

2
− |xj |2

2
+ xi · xj +

1

N

N∑
k=1

|xk|2

2
+

1

N

N∑
k=1

|xj |2

2
− 1

N

N∑
k=1

xk · xj

=

(
xi · xj −

1

N

N∑
k=1

xk · xj

)
− |xi|2

2
+

1

N

N∑
k=1

|xk|2

2

The quantity in parentheses is Klini,j , and the remaining term
δi = − |xi|2

2 + 1
N

∑N
k=1

|xk|2
2 depends only on i, as stated.

We can now relate the corresponding HSIC expressions:

HSIC(KE , L) = tr
(
KE L

)
=

N∑
i=1

N∑
j=1

(
Klini,j + δi

)
Lj,i

=
N∑
i=1

N∑
j=1

Klini,jLj,i +
N∑
i=1

N∑
j=1

δiLj,i

= HSIC(Klin, L) +
N∑
i=1

δi

N∑
j=1

Lj,i

Since the columns of L have mean zero, the sum on the right
is zero. If row-centering is used instead of column-centering,
the conclusion follows by first expressing the entries of the
Euclidean Gram matrix as the linear Gram matrix entries
plus a term that depends only on the column. □

Corollary 1. CKA(KE , L) = CKA(Klin, L) for any L.

Theorem 1 follows from Lemma 1 and Corollary 1.

3.2 Bounding the nonlinear Gaussian bandwidth range
A bound on the O( 1

σ2 ) term in Theorem 1 follows along
similar lines to the proof of Lemma 1, by examining in detail
how the residual grows as the CKA terms are assembled.
Theorem 2 shows how the relative magnitude of the residual
reflects the representation-specific relative range of variation
of pairwise distances between data examples in feature space,
as captured by the representation eccentricity, ρ, of Eq. 12.

Theorem 2. The residual in Lemma 1 is bounded by C
( ρ
σ

)2
when ρ

σ ≤ 2, where C is a finite constant that does not depend on
the representations X,Y , and ρ is the representation eccentricity
defined in terms of the ratios of representation diameters to median
distances in Eq. 12.

ρ = max

(
diam(X)

dX
,

diam(Y )

dY

)
(12)

Observations on the statement of Theorem 2:
1. ρ depends only on pairwise distances, and ρ ≥ 1, with

equality only if all pairwise distances are equal in each of X,Y .
2. The condition ρ

σ ≤ 2 goes beyond the statement that the
result applies to the large-σ limit, by providing a data-sensitive
measure of what constitutes a “large” value of σ.

3. We include both X and Y in Eq. 12 to cover the case in
which L is also Gaussian with bandwidth → ∞ (Appendix A.2).
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Proof of Theorem 2: The power series for e−u in Eq. 7 is
alternating if u > 0, with decreasing terms after the second
if u ≤ 2; the O(u2) error term in Eq. 7 is then no larger than
u2/2. The residual is controlled by the magnitude of u. As
u → 0, the O(u2) residual becomes negligible relative to the
leading linear term. We examine the details in Eq. 8 in this

light. The role of u is played by each term
α2

k,j

2σ2
X

(including
α2

i,j

2σ2
X

). Expanding Eq. 6 term by term, we obtain Eq. 13 after
grouping second-order (in u) parts at far right.

KG(σ)i,j
≈ −

α2
i,j

2σ2
X

+
1

N

N∑
k=1

α2
k,j

2σ2
X

+
1

2

α4
i,j

4σ4
X

− 1

N

N∑
k=1

1

2

α4
k,j

4σ4
X

(13)

Higher-order terms are not shown, for space reasons. The
first and third terms on the right of Eq. 13 are the beginning

of the power series for e
−

α2
i,j

σ2
X , while the second and fourth

correspond to the centering sum at the far right of Eq. 6.
As explained above, the third and fourth terms bound the
respective residuals, including omitted higher-order terms.

Since αk,j = |xk − xj | and σX = dXσ as described at the

beginning of the proof of Lemma 1, each u =
α2

k,j

2σ2
X

satisfies

u ≤ diam(X)2

2d2Xσ2
≤ ρ2

2σ2
, (14)

where the “representation eccentricity”, ρ, is as in Eq. 12.
The bound in Eq. 14 is uniform across all terms in Eq. 13,

and it depends on the ratio σ/ρ, rather than on σ alone. We
ensure u ≤ 2, and therefore that the O(u2) residual in the
alternating power series of Eq. 7 will be bounded by u2

2 , by
imposing the large-σ condition in Eq. 15.

ρ

σ
≤ 2 (15)

Since u ≤ ρ2

2σ2 for each term u =
α2

k,j

2σ2
X

in Eq. 13, the

corresponding residual is at most u2

2 ≤ 1
4

( ρ
σ

)4; therefore, the
mean of such terms at far right in Eq. 13, and the difference
between the remaining positive second-order term and that
mean, are also ≤ 1

4

( ρ
σ

)4 in absolute value, so we obtain an
explicit bound on the O

(
1
σ4

)
residual of Eq. 8, in Eq. 16.∣∣∣∣∣12 α4

i,j

4σ4
X

− 1

N

N∑
k=1

1

2

α4
k,j

4σ4
X

∣∣∣∣∣ ≤ 1

4

( ρ
σ

)4
(16)

Next, we note that since HSIC (Eq. 2) is bilinear, CKA
(Eq. 3) is invariant under uniform scaling of either Gram
matrix K or L. We assume without loss of generality that L
is bounded by 1 in absolute value.

Therefore, aggregating the N2 residual terms scaled by
Lj,i in Eq. 9 only multiplies the constant 1/4 on the right of
Eq. 16 by a finite, representation-independent factor. Scaling
by σ2

X = d2Xσ2 in Eq. 10 changes the
( ρ
σ

)4 core of the residual
to d2Xρ2

( ρ
σ

)2; the additional d2Xρ2 factor can be ignored
because of exact cancelation with the denominator.

We argue similarly about the analogous residuals in the
denominator term HSIC(KG(σ)(X),KG(σ)(X)) in Lemma 1,

which is the sum of the squares of the KG(σ)i,j
from Eq. 13.

By Eq. 14, the leading term in Eq. 13 satisfies Eq. 17.∣∣∣∣∣− α2
i,j

2σ2
X

+
1

N

N∑
k=1

α2
k,j

2σ2
X

∣∣∣∣∣ ≤ ρ2

2σ2
(17)

We also have the bound on the Eq. 13 residual, in Eq. 16.
From Eq. 13, the residual of the square KG(σ)

2

i,j
is, therefore,

at most twice the product ρ2

2σ2
1
4

( ρ
σ

)4, hence at most 1
4

( ρ
σ

)6,
plus a O

(
1
σ8

)
term that can be accommodated by slightly

increasing the multiplicative constant in front of
( ρ
σ

)4; only
a bounded 1

σ range needs to be considered, as in Eq. 15.
Taking square roots and multiplying by the HSIC(L,L)

factor in the denominator scales the residual by a finite
representation-independent factor due to the bound of 1 on
L, as in the above discussion for the numerator.

Including X and Y in Eq. 12 extends the above arguments
to the case of two Gaussian kernels of bandwidths → ∞.

Express the CKA quotient in the form R(1+a)/(1+ b) =
(1 + a)

∑∞
k=0(−1)kbk, where R is the ratio of the lead-

ing terms in numerator and denominator (which equals
CKA(Klin, L) by Theorem 1) and a, b are relative residuals
in the numerator and denominator. We see that the net CKA
relative residual is approximately the difference a− b of the
relative residuals. The preceding paragraphs imply that both
a and b are bounded by a finite representation-independent
constant times

( ρ
σ

)2. Since CKA takes values in the bounded
interval [0, 1], it follows that the O

(
1
σ2

)
absolute residual in

Eq. 11 is likewise bounded by such a constant times
( ρ
σ

)2.
This completes the proof of Theorem 2. □

Notes: Theorem 2 implies that Gaussian RBF CKA approx-
imately equals Euclidean CKA for bandwidths σ ≫ ρ. For
lower-dimensional representations X , Y , the representation
eccentricity, ρ, provides a data-sensitive approximate thresh-
old between nonlinear and linear regimes of Gaussian CKA.
If feature dimensionality is high, concentration of Euclidean
distance [23] will make ρ ≈ 1; hence, for high-dimensional
representations, Gaussian CKA will behave linearly if σ ≫ 1.

One might expect higher values of ρ for multimodal
distributions, for example, or in the presence of outliers, as
larger representation diameters can occur in these cases rela-
tive to median distance. Theorem 2 suggests that nonlinear
behavior of Gaussian CKA may be more noticeable at a given
bandwidth, σ, for such data.

4 EXPERIMENTAL ILLUSTRATION

In this section we describe the results of a limited number
of experiments that compare CKA similarity of neural
feature representations based on Gaussian kernels of different
bandwidths, with linear CKA similarity. For simplicity, we
restrict attention to the case in which both of the kernels K,L
in Eq. 3 are of the same type, either Gaussian RBF kernels
of equal bandwidth, or standard linear kernels. Software for
these experiments is available from the author upon request.

Notation: In this section, we write CKAG(σ) as
shorthand for CKA(KG(σ),KG(σ)). Likewise, we abbreviate
CKA(Klin, Llin) (i.e., CKA(Klin(X),Klin(Y ))) as CKAlin.
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4.1 Experimental setup

Data sets: We used sample OpenML data sets [24]
(CC BY 4.0 license, https://creativecommons.org/licenses/
by/4.0/) for classification (splice, tic-tac-toe, wdbc, optdigits,
wine, dna) and regression (cpu, boston, Diabetes(scikit-learn),
stock, balloon, cloud); for data sets with multiple versions,
we used version 1. These data sets were selected based on
two considerations only: smaller size, in order to eliminate
the need for GPU acceleration and reduce environmental
impact; and an absence of missing values, to simplify the
development of internal feature representations for the CKA
computations. Data set sizes are given in Table 1.

Neural feature representations: Fully-connected neural
networks (NN) with two hidden layers were used. Feature
encodings X , Y were the sets of activation vectors of the
first and second hidden layers, respectively. Alternative NN
widths, w = 16, 32, 64, 128, 256, 512, 1024 were tested, with
w and w

4 hidden nodes in the first and second hidden layers.
A configuration with three hidden layers, of sizes 128, 32, 8,
was also tested, for which X , Y were the activation vectors
from layers 1 and 3.

Implementation: NN were trained using the
MLPClassifier and MLPRegressor classes in
scikit-learn [25], with cross-entropy or quadratic loss for
classification and regression, respectively, ReLU activation
functions, Glorot-He pseudorandom initialization [26], [27],
Adam optimizer [28], learning rate of 0.001, and a maximum
of 2000 training iterations. CKA was implemented in
Python (https://docs.python.org/3/license.html), using
NumPy [29] (https://numpy.org/doc/stable/license.html)
and Matplotlib [30] (PSF license, https://docs.python.org/3/
license.html). Experiments were performed on a workstation
with an Intel i9-7920X (12 core) processor and 128GB RAM,
under Ubuntu 18.04.5 LTS (GNU public license).

Experiments: 50 runs were performed for each pair
(D,w) of a data set D and NN width w. In each run, a new
NN model was trained on the full data set, starting from
fresh pseudorandom initial parameter values. A training run
was repeated if the resulting in-sample accuracy was below
0.8 (classification) or if in-sample coefficient of determination
was below 0.5 (regression), but not if the optimization had
not converged within the allowed number of iterations.
After the network had been trained in a given run, CKAlin
was computed once, and CKAG(σ) was computed for each
bandwidth σ = 2p, p = −4,−3, · · · , 8, for a total of 50
CKAlin and 650 CKAG(σ) evaluations per (D,w) pair.

Compute time: Compute time for the results presented
in the paper was approximately 32 hours, much of it on the
8 · 12 · (50 + 650) = 67200 CKA evaluations needed across
the 8 network widths (including the 128-32-8 three-hidden-
layer configuration) and the 12 data sets. Additional runs
for validation required another 12 hours. Several shorter
preliminary runs were carried out for debugging and initial
selection of the NN hyperparameters; configurations and
threshold values were selected empirically in order to ensure
a successful end to training after no more than a handful of
runs in nearly all cases. Total compute time across all runs is
estimated to have been 50 hours.

Evaluation metrics: CKA means and standard errors
(SE = standard deviation divided by

√
50), and medians and

standard error equivalents (SE = inter-quartile range divided
by

√
50) of the ratio ρ of Eq. 12 were computed across runs.

We measured the magnitude of the discrepancy between
CKAG(σ) and CKAlin by the base-2 logarithm of the relative
difference between the two measures as in Eq. 18.

log2 rel. CKA difference = log2

( |CKAG(σ) − CKAlin|
CKAlin

)
(18)

Theorem 1 implies that, for large σ, the logarithmic relative
difference of Eq. 18 should decrease along a straight line
of slope −2 as a function of log2 σ, reflecting a O(1/σ2)
dependence. Accordingly, for each data set, we determined a
1/σ2 asymptote by extrapolating backward from the largest
tested bandwidth value, σ = 28. If σ < 28, the predicted log2
relative difference along the 1/σ2 asymptote is as in Eq. 19,
where r8 is the observed relative difference at σ = 28.

predicted log2(rel. CKA diff. at σ) = log2 r8 − 2(log2 σ− 8)
(19)

We determined a 1/σ2 convergence onset bandwidth, σ∗
0

(Eq. 20), as the minimum bandwidth above which the
observed log2 relative difference between Gaussian and
linear CKA differs by less than 0.25 from its predicted value
in Eq. 19, uniformly along that data set’s 1/σ2 asymptote.

σ∗
0 = min{σ0 | log rel. diff.(σ) < 0.25 for all σ ≥ σ0} (20)

Threshold values other than 0.25 in Eq. 20 (1, 0.5, 0.1),
corresponding to different tolerances for the log relative
difference, yielded similar results in most cases in terms of
the resulting relative σ∗

0 ranks of the different data sets.

4.2 Discussion of experimental results
The results show a range of geometric characteristics of
learned feature representations across data sets, seen as
differences in the representation eccentricity, ρ, defined in
Eq. 12. Geometry is stable for a given data set, as indicated
by a small standard deviation for ρ, with some dependence
on network size. See Table 2 for the case of regression; the
Appendix includes the information for classification.

We observe generally lower values of ρ (Eq. 12) for wider
networks in Table 2. This is consistent with expectations, as
concentration of Euclidean distance in high dimensions [23]
will bring the ratio of maximum to median distance between
feature vectors closer to 1 as network width grows. The
balloon data set is the only one for which ρ increases with
network width. That data set contains a small group of
examples with lower values of the two attributes than the
rest (indices 332, 706, 969, 1025, 1041, 1399, 1453, 1510). Those
examples are increasingly distant from the majority (in units
of median distance) in the deeper (second or third) hidden
layer representations as width increases, driving the increase
in ρ; the ratio of maximum to median distance in the first
hidden layer representation does not exhibit similar growth.

Dimensionality of the raw data sets (Table 1) appears to
filter into the learned neural representations, as well. For
a fixed network width, the correlation between raw data
dimensionality and ρ is unambiguously negative, between
−0.38 and −0.33 for classification, and between −0.8 and
−0.85 for regression, even though representation dimension-
ality is fixed by network width.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://docs.python.org/3/license.html
https://numpy.org/doc/stable/license.html
https://docs.python.org/3/license.html
https://docs.python.org/3/license.html
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TABLE 1
Sizes of the data sets considered in the experimental evaluation.

Classification Regression
data set examples attributes data set examples attributes

splice 3190 60 cpu 209 7
tic-tac-toe 958 9 boston 506 13
wdbc 569 30 Diabetes(scikit-learn) 442 10
optdigits 5620 64 stock 950 9
wine 178 13 balloon 2001 1
dna 3186 180 cloud 108 5

TABLE 2
Median ratios, ρ = max(diam(X)/dX , diam(Y )/dY ), and ±2 standard error equivalent confidence intervals,

of maximum to median distance between features. w is NN width. Regression.

w cpu boston Diab(skl) stock balloon cloud

16 10.63 ± 0.53 5.08 ± 0.54 4.87 ± 0.01 3.09 ± 0.28 14.62 ± 0.88 6.59 ± 0.45
32 9.60 ± 0.58 3.87 ± 0.23 4.86 ± 0.01 2.68 ± 0.14 15.64 ± 0.83 5.76 ± 0.38
64 9.23 ± 0.29 3.57 ± 0.29 4.86 ± 0.01 2.62 ± 0.12 16.25 ± 0.90 5.99 ± 0.26
128 9.15 ± 0.20 3.61 ± 0.11 4.85 ± 0.01 2.50 ± 0.05 18.49 ± 0.86 5.84 ± 0.19
256 9.19 ± 0.16 3.40 ± 0.07 4.84 ± 0.01 2.48 ± 0.05 20.70 ± 0.88 6.05 ± 0.10
512 8.91 ± 0.12 3.38 ± 0.04 4.84 ± 0.01 2.44 ± 0.04 22.65 ± 0.72 6.20 ± 0.12
1024 8.82 ± 0.11 3.42 ± 0.03 4.82 ± 0.04 2.43 ± 0.02 25.18 ± 1.14 6.16 ± 0.19

128-32-8 9.96 ± 0.54 3.91 ± 0.24 4.83 ± 0.01 3.11 ± 0.25 22.71 ± 2.97 7.30 ± 0.23

Noticeable differences between Gaussian and linear CKA
occur for small bandwidths: Mean relative difference values
between CKAG(σ) and CKAlin greater than 0.2 (log2 values
greater than −2.3), are observed for several data sets when
σ ≤ 0.25 (when log2 σ ≤ −2) in the case of classification;
in fact, relative CKA difference values greater than 0.7
(log2 rel. CKA diff. > −0.5, values in the Appendix) are
observed for the dna data set when network width w is 128
or greater. This shows that noticeably nonlinear behavior of
Gaussian CKA is quite possible for small bandwidth values.
For some classification data sets, however (wdbc, wine),
and most regression data sets, the relative CKA difference
remains comparatively small for all bandwidths.

Gaussian CKA converges to linear CKA like 1/σ2: Fig. 1
shows confidence intervals for the means, of radius two
standard errors, of the observed log2 relative difference
between CKAG(σ) and CKAlin as a function of Gaussian
bandwidth, σ (Eq. 18). Convergence at the rate 1/σ2 for
σ ≫ 1 is observed (log-log slope of −2 in Fig. 1), as described
in Theorem 1. Results are stable across the range of neural
network configurations tested. Standard error of the relative
CKA difference is observed to decrease as network width
increases (e.g., Fig. 2), suggesting that wider networks are
less sensitive to variations in initial parameter values.

The Diabetes(scikit-learn) data set stands out for having,
by far, the smallest mean relative CKA difference among data
sets tested, across much of the σ range. The neural feature
maps X and Y for that data set have nearly proportional
linear Gram matrices Klin and Llin, hence the linear CKA
value is very close to 1. Because the matrix of squared
inter-example distances depends linearly on the linear Gram
matrix, the Gaussian CKA value is also very close to 1.

The representation eccentricity ρ (Eq. 12) is reflected in
convergence onset: Our experimental results suggest that
noticeably nonlinear behavior of Gaussian CKA occurs
almost exclusively for bandwidths σ < ρ: for all data sets

Fig. 1. Relative difference between Gaussian and linear CKA for neural
feature representations of classification (left) and regression (right) data
sets. Neural network width is w = 64. Shading extends two standard
errors from the mean. Dotted reference line of slope −2 indicates 1/σ2

relationship. Gaussian CKA (bandwidth σ) converges to linear CKA like
1/σ2 as σ → ∞, for all network widths. Onset of 1/σ2 convergence is
delayed for representations of high eccentricity, ρ (Table 3).

tested, the observed mean log2 relative difference between
linear and Gaussian CKA is less than 0.01 when σ > ρ, where
ρ is the ratio of maximum to median distance between feature
vectors (Eq. 12). This confirms our finding in section 3.2 that
CKAG(σ) differs little from CKAlin if σ ≫ ρ. The results
further suggest that the threshold between nonlinear and
linear regimes of Gaussian CKA is not substantially less
than ρ: while mean relative CKA difference for σ ≥ 1 peaked
under 0.1 for two-hidden-layer neural representations, across
all data sets tested, relative difference values less than 0.1
occur for the tic-tac-toe data set in the three-layer 128-32-
8 representation only when σ ≥ 4; the lower end of this
bandwidth range is quite close to the median ρ value of
4.2 for that representation (which differs from the width-64
two-layer representation in Figs. 1, 2).

Fig. 3 shows a noticeable positive correlation between ρ
and convergence onset bandwidth, σ∗

0 (Eq. 20), across all data
sets and network widths; correlation is 0.85 to two digits.
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Fig. 2. Relative difference between Gaussian and linear CKA for neural
feature representations associated with networks of different widths w =
32 (left) and w = 256 (right). Classification data sets. Shading extends
two standard errors from the mean. 1/σ2 convergence is observed in
both cases, as well as for all tested widths not shown. Wider networks are
less sensitive to initial parameter values, as evidenced by lower standard
error of the CKA relative difference; values appear in the Appendix.

Fig. 3. Eccentricity vs. convergence onset. Classification and regression.

We find additional support for the view that ρ approxi-
mates the boundary between nonlinear and linear regimes of
Gaussian CKA in the fact that σ∗

0 is largest for the data sets of
largest ρ: median log2 σ

∗
0 = 5, 4, 4 for balloon (ρ ≈ 16), wdbc

(ρ ≈ 11), cpu (ρ ≈ 9), respectively (σ∗
0 and ρ values differ

slightly among network widths and depths, but data sets of
largest ρ are the same). See Table 3. Diabetes(scikit-learn) ties
for third with log2 σ

∗
0 = 4; median log2 σ

∗
0 < 4 for all other

data sets tested.
Our experimental results as a whole confirm 1/σ2 conver-

gence of CKAG(σ) to CKAlin as σ → ∞ (Theorem 1, 2), and
support the use of the representation eccentricity, ρ (Eq. 12),
as a useful heuristic upper bound on the range of bandwidths
for which Gaussian CKA can display nonlinear behavior.

5 CONCLUSIONS

This paper considered the large-bandwidth asymptotics of
CKA using Gaussian RBF kernels. We proved that mean-
centering of the feature maps ensures that Gaussian RBF CKA
converges to linear CKA in the large bandwidth limit, with
an O(1/σ2) asymptotic relative difference; we also proved
related results for HSIC. We showed that an analogous result
fails for the non-centered kernel alignment measure of [3].

Furthermore, we showed that the geometry of the feature
representations impacts the bandwidth range for which
Gaussian CKA can behave nonlinearly, by proving that the
nonlinear residual is of order O((ρ/σ)2), where ρ is the
representation eccentricity ratio, ρ, of maximum to median
distance between feature vectors. Our experimental results

suggest that bandwidth values σ < ρ can lead to noticeably
nonlinear behavior of Gaussian CKA, whereas bandwidths
σ ≥ ρ will yield essentially linear behavior. In order to
enable nonlinear modeling, the bandwidth should, therefore,
be selected in the interval (0, ρ).

6 FUTURE WORK

Representation eccentricity, ρ, correlates well with the band-
width at which Gaussian CKA transitions between nonlinear
and linear regimes, and our theoretical results establish
convergence of Gaussian to linear CKA for large bandwidths.
One direction for future work is to seek additional representa-
tion characteristics that, in conjunction with eccentricity, can
better gauge the order of magnitude of the Gaussian-linear
CKA difference for a given representation. Such work could
provide further guidance in selecting between Gaussian and
linear CKA kernels in specific applications.

Robust versions of the representation eccentricity can also
be explored, in which maximum and median distance are
replaced by other quantile pairs of the distance distribution.
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APPENDIX A
SUPPLEMENTARY INFORMATION FOR THE PAPER
Gaussian RBF CKA in the large bandwidth limit
A.1 Details of the counterexample for non-centered
kernel alignment in section 3.1
Theorem 1 hinges on the assumption that the Gram matrices
are mean-centered. We show here that an analogous con-
vergence result does not hold for the non-centered kernel
alignment of [3], by considering the feature matrices below.

X =

[
1 0
0 1

]
Y =

[
1 0
1 1

]
In order to compute CKA(KG(σ), LG(σ)), we first compute,
for each of the feature matrices X and Y , the corresponding
matrix of distances between pairs of feature vectors (rows):

D(X) =

[
0

√
2√

2 0

]
D(Y ) =

[
0 1
1 0

]
D(X) and D(Y ) are scalings of one another. Given a
bandwidth, σ, we interpret σ as expressed in units of median
distance, as in the note in section 2.4. If diagonal zeros are
included in the median computation, then σX = dXσ = σ√

2

in the non-centered Gaussian entries e
−

|xi−xj |
2

2σ2
X of KG(σ),

and σY = dY σ = σ
2 in the entries e

−
|yi−yj |

2

2σ2
Y of LG(σ). The

non-centered matrices KG(σ)(X) and LG(σ)(Y ) are identical:

KG(σ)(X) =

[
1 e−

2
σ2

e−
2
σ2 1

]
= LG(σ)(Y )

Thus, numerator and denominator of the non-centered CKA
expression are also equal, so Gaussian CKA has the value 1:

CKA(KG(σ), LG(σ)) =
tr
(
KG(σ)LG(σ)

)√
tr
(
KG(σ)KG(σ)

)
tr
(
LG(σ)LG(σ)

)
=

(
1 + e−

2
σ2

)2
√(

1 + e−
2
σ2

)2 (
1 + e−

2
σ2

)2 = 1

(21)

Different intermediate numerical values occur if diagonal
zeros in D(X) and D(Y ) are excluded from the median
computation, but the final result in Eq. 21 is the same.

Now consider a linear kernel. First, compute the Gram
matrices of pairwise dot products between rows:

Klin(X) =

[
1 0
0 1

]
Llin(Y ) =

[
1 1
1 2

]
We find non-centered linear CKA straight from the definition:

CKA(Klin, Llin) =
tr (KlinLlin)√

tr (KlinKlin) tr (LlinLlin)

=
1 + 2√

(1 + 1) (2 + 5)
=

3√
14

(22)

Eqs. 21 and 22 show that, without centering, Gaussian and
linear CKA remain at a fixed positive distance from one
another in this example for all bandwidths σ. This proves that
an analog of Theorem 1 fails for non-centered CKA. For these
same X,Y , also note HSIC(KE , Llin) ̸= HSIC(Klin, Llin), so
the analog of Lemma 2 also fails without mean-centering.

A.2 Proof of Theorem 1 in case of two Gaussian kernels
The proofs in the paper focus on the case in which one kernel
is Gaussian with bandwidth σ → ∞ and the other is a fixed
kernel, L. We show here how, as indicated at the end of the
proof of Lemma 1, the case of two Gaussian kernels with
large bandwidths follows by a triangle inequality argument.
We will abbreviate CKA(K,L) as C(K,L); note that the
feature representations in K , L are X , Y , respectively.

First, we address Lemma 1 in the case of two Gaussian
kernels. Begin by decomposing the target difference between
Gaussian and Euclidean CKA as follows:

C(KG(σ1), LG(σ2))− C(KE , LE) =

C(KG(σ1), LG(σ2))− C(KE , LG(σ2)) + C(KE , LG(σ2))− C(KE , LE)

Given any desired tolerance, ϵ > 0, the single-Gaussian
case of Lemma 1 as proved in the main text (together with
symmetry of CKA in its two arguments) shows that there
exists a bandwidth σ2, such that the difference term at far
right, above, is less than ϵ/2 in absolute value whenever
σ2 > σ2.

Having fixed the bandwidth σ2, there similarly exists
a bandwidth σ1 such that the absolute value of the first
difference term on the right-hand side above is less than ϵ/2
whenever σ1 > σ1. By the scalar triangle inequality, it now
follows that the absolute value of the target difference on
the left-hand side above is smaller than ϵ whenever both
σ1 > σ1 and σ2 > σ2.

This argument proves Lemma 1 in the case of two
Gaussian kernels: as σ1, σ2 → ∞,

C(KG(σ1), LG(σ2)) = C(KE , LE) + O

(
1

min(σ1, σ2)2

)
(23)

Lemma 2 and its Corollary hold for any kernel L,
including the Euclidean pseudo-kernel, LE :

C(KE , LE) = C(Klin, Llin) (24)

Theorem 1 for two Gaussian kernels follows from Eqs. 23, 24.
The min(σ1, σ2) term in Eq. 23 motivates the form of ρ in
Eq. 12, via the reasoning behind Eq. 14.

A.3 CKA difference for three-layer NN architecture

Fig. 4. Relative difference between Gaussian and linear CKA for neural
feature representations of classification (left) and regression (right) data
sets. Three-layer 128-32-8 neural network configuration. Shading extends
two standard errors from the mean. Dotted reference line of slope −2
indicates 1/σ2 relationship. Gaussian CKA (bandwidth σ) is observed to
converge to linear CKA like 1/σ2 as σ → ∞. Onset of 1/σ2 convergence
is delayed for data sets of large ρ (see text).
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A.4 Results tables for section 4.2 experiments

TABLE 4
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 16. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.28 -1.34 -2.25 -0.83 -2.21 -0.80
-3 -0.54 -2.04 -3.03 -1.75 -2.54 -0.40
-2 -1.29 -2.12 -4.08 -3.66 -3.58 -1.51
-1 -3.99 -3.12 -5.46 -2.92 -4.85 -4.64
0 -5.52 -4.29 -6.70 -3.70 -6.87 -6.21
1 -5.78 -5.41 -8.33 -4.97 -8.81 -6.84
2 -7.30 -6.88 -8.12 -6.70 -11.00 -8.50
3 -9.19 -8.70 -8.96 -8.63 -12.83 -10.42
4 -11.17 -10.66 -9.97 -10.61 -14.82 -12.39
5 -13.16 -12.64 -11.70 -12.61 -16.83 -14.39
6 -15.16 -14.64 -13.64 -14.61 -18.84 -16.39
7 -17.16 -16.64 -15.63 -16.61 -20.84 -18.39
8 -19.16 -18.64 -17.62 -18.61 -22.84 -20.39

TABLE 5
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 32. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -2.29 -0.94 -3.08 -2.27 -2.73 -2.77
-3 -1.60 -2.18 -4.05 -1.28 -3.35 -0.60
-2 -0.99 -2.74 -5.23 -4.98 -4.62 -0.89
-1 -3.83 -4.04 -6.72 -3.87 -6.39 -4.01
0 -6.39 -5.88 -8.43 -4.80 -8.30 -7.12
1 -6.78 -6.68 -10.19 -6.37 -10.99 -9.20
2 -8.30 -8.17 -10.01 -8.24 -13.46 -10.80
3 -10.35 -10.05 -10.20 -10.20 -15.15 -12.75
4 -12.19 -12.03 -11.45 -12.19 -17.1 -14.71
5 -14.18 -14.02 -13.27 -14.19 -19.1 -16.69
6 -16.17 -16.02 -15.22 -16.19 -21.11 -18.69
7 -18.17 -18.02 -17.21 -18.19 -23.11 -20.69
8 -20.17 -20.02 -19.21 -20.19 -25.11 -22.69

TABLE 6
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 64. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.57 -0.99 -4.30 -3.18 -3.21 -3.43
-3 -3.44 -1.18 -5.4 -1.78 -4.15 -1.32
-2 -0.86 -4.28 -6.69 -4.70 -6.03 -0.53
-1 -3.44 -5.30 -7.89 -4.81 -8.24 -3.42
0 -7.45 -5.12 -9.74 -5.67 -10.49 -6.29
1 -8.09 -6.32 -11.90 -7.25 -13.27 -9.53
2 -9.34 -8.12 -11.71 -9.14 -15.92 -11.70
3 -11.19 -10.06 -11.51 -11.12 -18.06 -13.91
4 -13.15 -12.05 -12.87 -13.11 -20.29 -15.93
5 -15.14 -14.05 -14.71 -15.11 -22.31 -17.96
6 -17.14 -16.05 -16.67 -17.11 -24.24 -19.96
7 -19.14 -18.05 -18.66 -19.11 -26.23 -21.97
8 -21.14 -20.05 -20.66 -21.11 -28.23 -23.97

TABLE 7
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 128. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.53 -0.97 -5.84 -2.96 -3.82 -2.76
-3 -1.75 -1.04 -7.05 -3.04 -5.25 -3.80
-2 -1.03 -2.83 -8.33 -5.01 -7.65 -0.46
-1 -3.31 -4.17 -9.70 -5.24 -10.18 -3.13
0 -7.09 -4.49 -11.86 -6.08 -12.56 -5.65
1 -9.31 -5.94 -13.17 -7.72 -15.33 -8.56
2 -10.32 -7.80 -13.25 -9.63 -18.46 -11.12
3 -12.10 -9.76 -13.76 -11.61 -20.20 -13.27
4 -14.05 -11.75 -15.07 -13.60 -22.23 -15.45
5 -16.04 -13.75 -16.90 -15.60 -24.26 -17.33
6 -18.04 -15.75 -18.86 -17.60 -26.27 -19.32
7 -20.04 -17.75 -20.85 -19.60 -28.27 -21.32
8 -22.04 -19.75 -22.85 -21.60 -30.27 -23.32

TABLE 8
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 256. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.43 -0.94 -6.75 -3.12 -4.30 -2.52
-3 -1.48 -0.97 -7.98 -4.65 -5.93 -3.99
-2 -1.31 -2.14 -9.24 -5.54 -8.42 -0.47
-1 -3.22 -3.25 -10.63 -5.35 -10.98 -2.88
0 -6.27 -4.05 -12.57 -6.28 -13.40 -5.30
1 -10.21 -5.59 -14.61 -7.94 -16.01 -7.96
2 -12.02 -7.46 -14.16 -9.85 -18.90 -10.36
3 -13.77 -9.43 -14.44 -11.83 -21.26 -12.50
4 -15.70 -11.42 -15.80 -13.82 -23.34 -14.52
5 -17.69 -13.42 -17.64 -15.82 -25.34 -16.52
6 -19.67 -15.42 -19.61 -17.82 -27.34 -18.52
7 -21.66 -17.42 -21.60 -19.82 -29.33 -20.52
8 -23.66 -19.42 -23.59 -21.82 -31.33 -22.53

TABLE 9
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 512. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.34 -0.60 -7.68 -3.27 -5.05 -2.40
-3 -1.39 -0.63 -8.90 -5.91 -7.02 -3.27
-2 -1.16 -1.71 -10.17 -5.70 -9.59 -0.45
-1 -3.01 -2.81 -11.52 -5.51 -12.10 -2.68
0 -5.71 -3.69 -13.38 -6.48 -14.47 -5.09
1 -9.51 -5.23 -14.60 -8.15 -17.21 -7.63
2 -12.15 -7.10 -14.53 -10.06 -19.76 -9.91
3 -14.51 -9.06 -14.86 -12.04 -21.92 -12.00
4 -16.45 -11.05 -16.14 -14.04 -24.06 -14.02
5 -18.45 -13.05 -17.98 -16.03 -26.11 -16.02
6 -20.45 -15.05 -19.94 -18.03 -28.13 -18.03
7 -22.45 -17.05 -21.93 -20.03 -30.13 -20.03
8 -24.45 -19.05 -23.93 -22.03 -32.13 -22.03
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TABLE 10
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 1024. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -1.40 -0.67 -7.96 -3.29 -5.01 -2.44
-3 -1.57 -0.72 -9.40 -4.01 -6.95 -4.48
-2 -0.72 -1.97 -10.78 -4.81 -9.55 -0.38
-1 -2.73 -3.06 -11.84 -5.81 -12.18 -2.56
0 -5.28 -3.93 -13.24 -6.60 -14.67 -4.98
1 -8.57 -5.46 -13.84 -8.23 -17.52 -7.49
2 -11.26 -7.32 -13.95 -10.13 -20.21 -9.75
3 -13.32 -9.29 -14.43 -12.11 -22.60 -11.83
4 -15.36 -11.28 -15.89 -14.10 -24.46 -13.85
5 -17.37 -13.28 -17.73 -16.10 -26.47 -15.86
6 -19.37 -15.28 -19.70 -18.10 -28.48 -17.86
7 -21.37 -17.28 -21.69 -20.10 -30.48 -19.86
8 -23.37 -19.28 -23.69 -22.10 -32.49 -21.86

TABLE 11
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

Three-layer 128-32-8 NN. Classification.

log2 σ splice tic-tac-toe wdbc optdigits wine dna

-4 -2.46 2.82 -3.03 -2.1 -1.82 -1.13
-3 -0.68 1.76 -4.02 -0.76 -1.91 -0.36
-2 -0.38 0.50 -5.2 -4.57 -2.72 -0.29
-1 -2.94 -0.03 -6.63 -2.64 -4.34 -3.21
0 -6.07 -1.20 -8.5 -3.76 -6.33 -5.92
1 -8.57 -2.64 -9.48 -5.46 -8.96 -8.69
2 -9.72 -4.40 -9.24 -7.38 -11.05 -11.03
3 -11.57 -6.32 -9.68 -9.36 -13.27 -13.14
4 -13.49 -8.31 -11.03 -11.35 -15.29 -15.03
5 -15.47 -10.30 -12.87 -13.35 -17.26 -17.01
6 -17.47 -12.30 -14.85 -15.35 -19.26 -19.00
7 -19.47 -14.30 -16.85 -17.35 -21.26 -21.00
8 -21.46 -16.30 -18.85 -19.35 -23.26 -23.00

TABLE 12
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 16. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -3.28 -2.15 -2.11 -2.76 -8.00 -3.19
-3 -3.38 -2.02 -3.95 -2.53 -8.26 -2.38
-2 -4.06 -2.56 -6.42 -2.25 -8.25 -2.16
-1 -5.25 -3.49 -9.22 -2.95 -8.58 -2.75
0 -6.73 -4.42 -11.72 -4.42 -9.08 -3.70
1 -8.14 -4.95 -14.04 -5.90 -9.26 -4.90
2 -9.67 -6.09 -16.74 -7.77 -9.63 -6.70
3 -9.78 -7.81 -19.29 -9.73 -10.23 -8.85
4 -10.63 -9.77 -21.56 -11.71 -11.50 -11.03
5 -12.57 -11.76 -23.69 -13.70 -12.94 -13.16
6 -14.42 -13.76 -25.70 -15.70 -14.81 -15.23
7 -16.40 -15.76 -27.70 -17.70 -16.75 -17.22
8 -18.39 -17.76 -29.70 -19.70 -18.73 -19.22

TABLE 13
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 32. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -4.60 -2.91 -1.63 -2.90 -7.09 -3.94
-3 -4.67 -2.84 -3.43 -2.89 -7.61 -4.59
-2 -5.43 -3.57 -5.88 -2.47 -7.47 -3.74
-1 -6.77 -4.74 -8.64 -2.82 -7.50 -3.62
0 -7.95 -4.92 -11.10 -4.25 -7.71 -4.48
1 -9.01 -5.67 -13.36 -6.00 -8.17 -5.53
2 -10.07 -7.08 -16.02 -7.78 -8.49 -7.37
3 -10.37 -8.95 -18.57 -9.75 -9.84 -9.76
4 -11.42 -10.88 -20.81 -11.77 -10.58 -11.83
5 -13.24 -12.87 -22.88 -13.80 -12.05 -13.88
6 -15.21 -14.87 -24.90 -15.82 -13.95 -15.88
7 -17.20 -16.87 -26.90 -17.83 -15.99 -17.88
8 -19.20 -18.87 -28.90 -19.84 -17.94 -19.88

TABLE 14
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 64. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -6.48 -3.74 -1.34 -3.27 -6.41 -3.78
-3 -6.06 -3.94 -3.23 -3.45 -6.85 -4.63
-2 -6.71 -4.30 -5.85 -2.95 -6.70 -5.10
-1 -7.69 -5.24 -8.71 -3.56 -6.62 -4.85
0 -9.22 -5.40 -11.15 -4.83 -6.66 -5.72
1 -10.64 -5.81 -13.42 -6.37 -6.96 -6.34
2 -11.59 -7.36 -16.22 -8.22 -7.81 -7.71
3 -12.25 -9.30 -18.91 -10.14 -9.37 -10.15
4 -13.37 -11.34 -21.14 -12.13 -10.42 -12.16
5 -15.17 -13.41 -23.21 -14.12 -11.99 -14.17
6 -17.09 -15.40 -25.23 -16.12 -13.92 -16.17
7 -19.08 -17.39 -27.24 -18.12 -15.91 -18.16
8 -21.07 -19.39 -29.24 -20.12 -17.90 -20.16

TABLE 15
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 128. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -7.58 -4.12 -1.10 -3.42 -5.11 -3.80
-3 -7.11 -4.02 -2.94 -3.51 -5.31 -4.32
-2 -7.86 -4.92 -5.60 -3.11 -5.26 -5.37
-1 -8.80 -6.51 -8.49 -3.65 -5.23 -5.38
0 -10.61 -7.14 -10.94 -4.65 -5.26 -6.05
1 -11.41 -7.45 -13.18 -6.09 -5.46 -6.85
2 -12.66 -9.00 -16.06 -7.92 -5.96 -8.36
3 -12.60 -10.99 -18.78 -9.88 -7.47 -10.43
4 -13.70 -13.04 -21.18 -11.86 -8.63 -12.50
5 -15.50 -14.99 -23.36 -13.86 -10.28 -14.45
6 -17.47 -16.98 -25.38 -15.86 -12.22 -16.42
7 -19.46 -18.98 -27.37 -17.86 -14.21 -18.41
8 -21.46 -20.98 -29.37 -19.86 -16.20 -20.41
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TABLE 16
Median ratios, ρ = max(diam(X)/dX , diam(Y )/dY ), with ±2 standard error equivalent confidence intervals,

of maximum to median distance between features. w is NN width. Classification.

w splice tic-tac-toe wdbc optdigits wine dna

16 3.91 ± 0.21 3.53 ± 0.30 10.88 ± 0.56 3.33 ± 0.29 5.00 ± 0.01 2.87 ± 0.08
32 3.67 ± 0.13 2.71 ± 0.14 10.82 ± 0.26 2.42 ± 0.08 5.00 ± 0.01 2.68 ± 0.06
64 3.14 ± 0.10 2.43 ± 0.10 10.74 ± 0.18 2.15 ± 0.04 5.01 ± 0.00 2.55 ± 0.04
128 2.95 ± 0.07 2.36 ± 0.05 10.64 ± 0.09 2.00 ± 0.05 5.00 ± 0.00 2.47 ± 0.03
256 2.83 ± 0.06 2.34 ± 0.07 10.57 ± 0.06 1.92 ± 0.03 5.00 ± 0.00 2.43 ± 0.02
512 2.76 ± 0.05 2.48 ± 0.06 10.57 ± 0.06 1.87 ± 0.03 5.00 ± 0.00 2.39 ± 0.02
1024 2.74 ± 0.05 2.45 ± 0.04 10.62 ± 0.06 1.89 ± 0.03 5.01 ± 0.00 2.39 ± 0.02

128-32-8 3.28 ± 0.12 4.23 ± 0.33 10.87 ± 0.26 2.34 ± 0.08 5.00 ± 0.00 2.55 ± 0.08

TABLE 17
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 256. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -8.24 -4.48 -0.90 -2.70 -4.23 -3.26
-3 -7.87 -4.47 -2.61 -2.74 -4.35 -3.56
-2 -8.71 -5.97 -5.28 -2.45 -4.33 -5.20
-1 -9.64 -7.36 -8.22 -2.94 -4.31 -6.21
0 -11.44 -7.40 -10.70 -4.17 -4.32 -6.63
1 -12.89 -7.67 -13.00 -5.66 -4.44 -7.99
2 -13.74 -9.13 -15.68 -7.51 -4.81 -8.36
3 -14.18 -10.99 -18.37 -9.46 -6.17 -10.52
4 -15.26 -12.96 -20.66 -11.45 -7.44 -12.68
5 -17.03 -14.95 -22.75 -13.45 -9.08 -14.69
6 -18.97 -16.95 -24.78 -15.45 -11.00 -16.69
7 -20.95 -18.95 -26.79 -17.45 -12.98 -18.69
8 -22.95 -20.95 -28.79 -19.45 -14.98 -20.69

TABLE 18
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 512. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -8.29 -3.78 -0.75 -2.35 -3.68 -2.91
-3 -8.12 -3.80 -2.10 -2.39 -3.81 -3.25
-2 -9.00 -5.10 -4.40 -2.20 -3.78 -5.28
-1 -9.90 -7.37 -7.15 -2.64 -3.76 -6.29
0 -11.48 -7.91 -9.61 -3.78 -3.79 -6.54
1 -13.07 -8.15 -11.85 -5.31 -3.91 -7.45
2 -13.93 -9.65 -14.89 -7.17 -4.24 -7.95
3 -15.26 -11.56 -18.07 -9.13 -5.56 -9.79
4 -16.44 -13.51 -20.29 -11.12 -6.86 -11.83
5 -18.24 -15.49 -22.44 -13.12 -8.35 -13.85
6 -20.22 -17.49 -24.47 -15.12 -10.25 -15.86
7 -22.23 -19.49 -26.52 -17.12 -12.22 -17.86
8 -24.23 -21.49 -28.50 -19.12 -14.22 -19.86

TABLE 19
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

NN width w = 1024. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -6.87 -3.35 -0.67 -2.18 -3.26 -2.72
-3 -6.86 -3.19 -1.71 -2.22 -3.39 -3.11
-2 -7.90 -4.01 -3.64 -2.05 -3.35 -5.58
-1 -8.70 -6.49 -5.97 -2.46 -3.33 -5.28
0 -10.07 -7.61 -8.20 -3.61 -3.36 -6.10
1 -11.85 -7.65 -10.35 -5.15 -3.48 -7.13
2 -13.22 -8.89 -13.34 -7.01 -3.78 -7.77
3 -15.36 -10.72 -16.72 -8.98 -4.91 -9.62
4 -17.14 -12.68 -19.23 -10.97 -6.16 -11.53
5 -18.91 -14.67 -21.48 -12.97 -7.69 -13.53
6 -20.81 -16.66 -23.63 -14.97 -9.58 -15.53
7 -22.80 -18.66 -25.64 -16.97 -11.55 -17.53
8 -24.80 -20.66 -27.63 -18.97 -13.55 -19.53

TABLE 20
Mean rel. difference log2(|CKAG(σ) − CKAlin|/CKAlin).

Three-layer 128-32-8 NN. Regression.

log2 σ cpu boston Diab(skl) stock balloon cloud

-4 -4.25 -2.12 -0.78 -1.29 -3.81 -3.40
-3 -4.20 -1.87 -2.17 -0.79 -4.05 -2.85
-2 -4.91 -2.27 -4.50 -0.31 -4.06 -2.29
-1 -5.96 -3.41 -7.20 -0.67 -3.99 -2.75
0 -7.90 -4.93 -9.61 -2.32 -4.10 -4.03
1 -9.61 -5.34 -11.94 -4.36 -4.36 -5.54
2 -10.09 -6.66 -14.60 -6.31 -5.03 -6.30
3 -10.43 -8.49 -17.68 -8.28 -6.84 -8.70
4 -11.44 -10.43 -19.71 -10.27 -7.76 -10.94
5 -13.27 -12.41 -21.68 -12.27 -9.48 -12.94
6 -15.25 -14.41 -23.69 -14.27 -11.16 -14.90
7 -17.25 -16.41 -25.69 -16.27 -13.06 -16.90
8 -19.25 -18.41 -27.69 -18.27 -15.04 -18.90
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