First Exam
CS 101 Computer Science I

KEY
Friday February 8, 2013
Instructor Muller
Boston College
Fall 2012

Please write your name at the top. Do problem 1 and either of problems 2 or 3 but not both and do
problems 4, 5 and 6. You are allowed to use one 8.5 x 11 sheet of notes. Computers, calculators, books and
notes are prohibited. In solving problems involving repetition, you are free to use any form that you would
like. Partial credit will be given so be sure to show your work. Please try to write neatly.

Problem Points Out Of

1 5
2 5 or
3 5
4 7
5 7
6 8
Total 32

1. (5 Points) Consider the following python functions for computing the volume of a cylinder:

def area(radius):
return 3.14 * radius ** 2

def volume(radius, height):
return area(radius) * height

Use the plug-it-in method to show the evaluation of volume(2, 4 - 1). Your answer should include
one line for each individual step in the computation.

volume(1 + 1, 3)

= volume(2, 3)

= return area(2) * 3

= return (return 3.14 * 2 **x 2) * 3
= return (return 3.14 * 4) * 3

= return (return 12.56) * 3

= return 12.56 * 3

= return 37.68

= 37.68

2. (5 Points) Temperatures are usually expressed using either Fahrenheit or Celcius scales. To convert
Fahrenheit temperature T to Celcius, subtract 32 from T and multiply the result by 5.0 / 9.0. Write a
function fToC : float -> float that accepts a temperature in Fahrenheit and returns the tempera-
ture in Celcius.

def fToC(farenheit): return (faremheit - 32.0) * (5.0 / 9.0)

3. (5 Points) Write a python function member : a * a list —-> bool such that a call member (item, list)
will return True if item occurs in 1ist. Otherwise, member should return False.

def member(item, list):
if list == []:
return False
else:
if item == 1ist[0]:
return True
else:
return member(item, list([1:])

4. (7 Points) An association list is a list of pairs [(key;, valuei), ..., (key,, value,)] where each
key is associated with a value. For example, the association list

a = [(4, [1, 2, 41D, (5, [1, 8], (6,01, 2, 3, 61)]

associates the integer keys 4, 5 and 6 with their integer factors. Write a python function

assoc : a * (a * b) list -> b such that given a call assoc(key, alist), the function assoc re-
turns the value in the pair with the matching key. For example, assoc(5, a) should evaluate to
[1, 5]. You may assume that the keys in the association list are unique but you may not assume
that key is actually associated with anything in the alist. If key isn’t associated with any value your
function should return the special built-in value None.

def assoc(key, alist):
for pair in alist:
if key == pair[0]:
return pair[1]
return None

or

def assoc(key, alist):
if alist == []:
return None
else:
pair = alist[0]
if key == pair[0]:
return pair[1]
else:
return assoc(key, alist[1:])

5. (7 Points) Association lists are an especially simple implementation of a dictionary. They work well
enough for small applications but they aren’t particularly efficient when it comes to finding keys. On
average, the assoc function above has to look halfway through the list to find a given key. A more
efficient way to represent associations between keys and values is to use a binary search tree.

A simple scheme for implementing a dictionary using a binary search tree in Python could work as
follows:

e An empty dictionary is the built-in python constant None,

e A non-empty dictionary is a 4-tuple of the form (dictionary, key, value, dictionary).

So if d is a non-empty dictionary, d [0] is another dictionary, d[1] is a key, d[2] is a value, and d[3] is
another dictionary. For example, using integer keys and string values, dictionary d below is a dictionary
recording 3 associations:

leftD = (None, 100, ’Alice’, None)
rightD = (None, 300, ’Mary’, None)
d = (leftD, 200, ’Bob’, rightD)

The essential idea of the scheme is that the keys in the dictionary are arranged so the smaller keys are
always on the left while the larger keys are on the right. For example, in dictionary d above, the single
key in dictionary d[0] is 100 which is less than 200 while the single key in dictionary d [3] is 300 which
is greater than 200.

(a) Write a function find(key, dictionary) which finds the value associated with the key in the
dictionary. Your function should return None if the key isn’t associated with a value in the
dictionary.

def find(key, dictionary):

if dictionary == None:
return None
else:
k = dictionary[1]
if key == k:
return dictionary[2]
else:
if key < k:
return find(key, dictionaryl[0])
else:

return find(key, dictionary[3])

