Second Exam
CS 101 Computer Science I

KEY
Tuesday November 12, 2013
Instructor Muller
Boston College
Fall 2013

Before reading further, please arrange to have an empty seat on either side of you. Now that you are
seated, please write your name at the top of this exam.

This is a closed-book and closed-notes exam. Computers, calculators, books and notes are prohibited. In
solving problems, feel free to use any function for an earlier problem in a solution for a later problem even
if you didn’t finish the earlier one. For problems other than 1b involving repetition, you are free to use
any repetition form that you would like.

Partial credit will be given so be sure to show your work. Please try to write neatly.

Problem Points Out Of
1 6
2 3
3 3
4 3
5 4
6 3
7 6

2 (extra credit)

Total 28

1. (6 Points Total) Consider the following (somewhat oddly spaced) rendering of our tail-recursive defini-
tion of the Fibonacci function:

def fibo(n):
def loop(n , a , b):
if n ==
return a
else:
return loop(n -1, b, a +b)

return loop(n , 1, 1)

(a) (2 points) Circle all non-parameter occurrences of variables. For each of these, draw an arrow to
their governing formal parameter occurrence.

(b) (4 points) Rewrite the Fibonacci function using either a while-loop or a for-loop rather than

recursion.
Answer:
def fibo(n): def fibo(n):
a=1 nums = [1] * n
b=1 if n > 2:
while (n > 1): for i in range(2, n):
c=a+b nums[i] = nums[i - 1] + nums[i - 2]
a=b>b return nums[n - 1]
b=c
n=n-1
return a

2. (3 Points) Write a Python function reverse : a list — a list such that a call reverse(myList) will
return the reversal of myList. For example, the call reverse([1, 1, 0, 0]) would return the list [0, O,
1, 1]. Solve this problem without using the built-in mutating reverse function.

Answer:
def reverse(xs):

N = len(xs)
return [xs[N - i - 1] for i in range(N)]

3. (3 Points) Write a function reverseRows : (a list) list — (a list) list such that a call re-
verseRows(twoDList) returns the 2D list resulting from reversing every row in twoDList. For
example, if twoDList is the list:

(1, 2, 3, 41,
(5, 6, 7, 8]]

then the call reverseRow (twoDList) would return the 2D list

(f4, 3, 2, 1],
(8, 7, 6, 511

Answer:

def reverseRows(twoDList): return map(reverse, twoDList)

4. (3 Points) In lecture, we discussed the positional numeral system and saw, as Leibniz first observed,
that the arithmetic algorithms that we learned as children work for numerals expressed in bases other
than decimal. We were primarily interested in base 2 (binary) but also in base 16 (hexadecimal or hex).
This problem relates to the addition of two bits and a carry-in bit. (This problem isn’t concerned with
the overall addition algorithm.)

<- carry line

<- sum line

Write a Python function addBits : (int * int * int) — (int * int) such that a call addBits(bit1,
bit2, carryIn) would return the pair (carryOut, sumBit) where sumBit is the sum bit (i.e., the one
that we would write below the line) and carryOut is the bit that would carry to the left. Pronouncing
the symbol => as “should return”, a complete specification of the input/output behavior of addBits
is as follows:

addBits(0, 0, 0) => (0, 0)
addBits(0, 0, 1) => (0, 1)
addBits(0, 1, 0) => (0, 1)
addBits(0, 1, 1) => (1, 0)
addBits(1, 0, 0) => (0, 1)
addBits(1, 0, 1) => (1, 0)
addBits(1, 1, 0) => (1, 0)
addBits(1, 1, 1) => (1, 1)
Answer:

def addBits(bitl, bit2, carryln):
sum = bitl + bit2 + carryln
return (sum / 2, sum % 2)

This works well enough, but it somehow seems wrong to define something simpler (i.e.,
adding two bits) using something more complicated (i.e., division and remainder).

In practice, addition of bits is usually specified using logical values True and False rather
than binary numerals. We can think of 1 as True and 0 as False or we can look at them the
other way around. In either case, we can specify the addBits functions using the simple
logical operators and, or and xor or exclusive or.

Table 1: Truth Tables

A B AandB AorB AxorB

False False False False False

False True False True True
True False False True True
True True True True False

These operators are often depicted graphically using the following symbols for and, or
and xor (left to right):

We can draw a box around this diagram and then duplicate it.

skip

AND

da
DY
da

il

hlly

i Q_,J‘
. o i T\ o 5
= 7.
couT
Figure 1: A One-bit Ripple/Carry Adder
A 4 BIT RIPPLE CARRY ADDER
B3 A3 B2 A2 Bl Al BO A0
B A B A B A B A
i co
FA Cin FA Cin FA Cin FA Cin =10
Cout S Cout S Cout S Cout S
‘ C3 c2 ‘ c
c s3 s2 s1 s0
FA - Full Adders A-Datal
B -Data 2 S-Sum
C-Carry

Figure 2: A Four-bit Ripple/Carry Adder

5. (4 Points) Consider the Python function digits:
def digits(m, n): return (m / n, m % n)

and it’s application in the process of converting a decimal numeral to another base. For example, to

convert the decimal numeral 13 to binary we could compute as follows:

digits(13, 2) = (6, 1)
digits(6, 2) = (3, 0)
digits(3, 2) = (1, 1)
digits(1, 2) = (0, 1) <- we stop because the quotient is O

Reading the rightmost digits in the four lines above (i.e., the remainders) from bottom to top gives
1101 which is 13 in binary. This method can be used to convert from decimal to any base greater than
1.

Write a Python function convert : int * int — int list such that a call convert(decimalNumeral,
newBase) will return a list of the digits for the numeral in the new base. The call for the example
above would be:

>>> convert (13, 2)
[1, 1, 0, 1]

For the purposes of this problem, you may assume that newBase is greater than 1 and less than 10.
Of course you may use the digits function from above.

Answer:

def convert(numeral, base):
(quotient, remainder) = digits(numeral, base)
if quotient ==
return [remainder]
else:
return convert(quotient, base) + [remainder]

6. (3 Points) Define a Python function sum2DList : (int list) list — int list such that a call
sum2DList(a) returns a list of the sums of each row in the array. For example, if a is the array

[[1’ 2’ 3’ 4]’
(5, 6, 7, 8]]

then the call sum2DList(a) would return the list [10, 26].
One point extra credit for writing sum2DList without using the built-in sum function.

Answer:
def sum2DList(a): return map(sum, a)
Or for 1 point extra credit:

def sum2DList(a):
return map(lambda row : reduce(operator.add, row, 0), a)

7. (6 Points Total) Storage Diagrams

(a) (3 Points) Show the state of the stack and heap after line (1) has been executed but before line
(2) has been executed.

def largerAndRest(coins):

larger = max(coins)

rest = [coin for coin in coins if coin != larger]

answer = (larger, rest) (1)

return answer 2
def £():

coins = [5, 10, 1, 25]
(larger, rest) = largerAndRest(coins)

£0O
Answer:
Stack Heap

e +

| largerAndRest |

e +—+

| bt |

| coins | o—#—t————m—m +

| +-—=+ | +-———t |

| larger | 25| | Fom e >l 5 | |

| ===+ | | +> +-———+ |

| rest | o—+—+---+ / | 10 | |

| +———+ | +————+ / +————+ |

| answer | o—+-—+-———————————- >| 25 | / [1]

| +-—=+ | +-———t / -t |

o + | o—+——+ |
+———— |

+———+ +————+ |

| £ 1 +=>| 5 |<———+

o + | +————+

| e |1 10 |

| coins | o—H+—t+———————mm——— + A+t

| ot | |1

| larger | 7 | | F————t

| ot | | 25 |

| rest | 7 | | +-———t

| PE——

e +

(b) (3 Points) Write Python code that would give rise to the following storage diagram. Annotate the
code with the label (1) at the point in the code where the diagram would exist in memory.

Stack Heap

+-——+

| £ |

o +

| +——+ | +———+

I a | o-t—t--—mmmm—- > 2|

| +-——+ | +-——+ +-——+

Fomm + | o-+-->| 6 |
+-——+ -+
41 | 8]

+———+ +-——+

Answer:

def £():
a= (2, (6, 8), 4 €D
return a

£O

(¢) (1 Point Extra Credit) Write Python code that would give rise to the following storage diagram.
Annotate the code with the label (1) at the point in the code where the diagram would exist in

memory:.
Stack Heap
+-——+
| £ |
ot +
| +-——+ | +———+
| a | o—+—t-———————- > | 2 |<————————- +
| +-——+ | +-——+ +- |-+
Fomm + | o—+-—-————- >| o |
+-——+ +-——+
| 4 | | 6 |
+-——+ +-——+
| 8 |
+-——+
Answer:
def £(O:
a=1[2, [0, 6, 8], 4]
al1]1[0] = a @D
return
£0O

