1/27/16

CS1101 Computer Science |

Spring 2016

Robert Muller

Today

* What this course is about
* Logistics

¢ Course administration

Super TA Staff (03 OCaml)

Nick Denari

Lab 03 Higgins 280
Tuesdays 4PM

Meagan Gonzalez

Lab 01 Higgins 280
Wednesdays 3PM

1/27/16

Super TA Staff (04 Python)

Laura Baumgartner

Lab 04 Higgins 280
Wednesdays 10AM

Jesse Mu
Lab 02 Higgins 280
Tuesdays 5PM

Home
http://www.cs.bc.edu/~muller/teaching/cs1101/s16/

CS 1101 Computer Science |

Fall 2015

Computer Science Department

The Morrissey College of Arts and Sciences

Boston College

About Staff Textbook Grading Schedule Resources

Notes Labs Piazza Canvas GitHub Problem Sets

Manual Stdlib Unilib OCaml.org

Created on 08-31-2015 20:41.

What CS1101 is About
Three interwoven themes:

1. Learning about information & computation
2. Learning how to code

3. Anintroduction and gateway to Computer
Science

1/27/16

Learning how to code
* Application of logic in problem solving

(math-ish)

* Clear, concise expression of ideas/
algorithms (english/poetry-ish)

Learning how to code
* Have an idea? You can build it!
* Empowering in almost any field ($S)
* Interesting and really fun!

* Learn by doing!

Learning how to code

* We'll use:
[Basie; RPaseak; C; Java; Python]

OCaml! as our programming language

1/27/16

Why OCaml?

* Computation can be approached from
either a mathematical or mechanical
perspective

* From the former perspective, coding
is a natural extension of algebra

Why OCaml?

* Ocaml emphasizes the most important
ideas:

— expression reduction/simplification,
— functions, abstraction & composition,

— variables are mathematical variables,
— types.

Why OCaml?

* Languages in industry adopting ideas
from ML:
[Java 8; C#; F#; Python; JavaScript; C++;
Rust; Go; Elm; Swift; Scala; ...]

* Not that it matters, but other good
schools doing likewise.

1/27/16

Required Work

* Two 75-minute lectures each week
open laptops prohibited!

¢ One 50-minute lab each week
laptops required!

* Ten programming projects, time requires varies but
expect 8-10 hours of work each week,

¢ Three exams.

Take-Aways
* By the end of the semester:

— You'll have a reasonably robust understanding of
computation

— You'll be skilled; able to think “computationally” able
to code!

— You'll have a better understanding of computer
science.

Take-Aways
* By the end of the semester:

— You’ll be a competent beginning programmer and
will be able to pick up Python or Java easily;

— You'll be well-prepared for CS1102;

— You'll have a better understanding of computer
science.

1/27/16

Required Background

* High School algebra

¢ Familiarity with basic trigonometry and
geometry also helpful.

* No programming experience required.

* A taste for building things also helpful.

Computation and Calculation

Three Aspects of Computation

1. Simplification
2. Abstraction
3. Composition

1/27/16

Simplification
In middle school we learned about algebraic
expressions:

ax2+bx+c

Where a, b and c are constants and x is a
variable. We learned to solve for roots, how to
factor them, we learned the properties of their
curves, etc.

Simplification

For example, letting the constantsa=3,b =2
and c =1, we have:

3x2+2x+1

Which has fixed constants and a variable x.

1/27/16

Simplification

We can plug a number in for variable x and
simplify. Say 5:

3e524+2e5+ 1

Simplification

3e52+2e5+ 1
> 325+ 2e5+1]
2> 75+25+1
2> 75+10+1
2> 85+1
2> 86

Simplification

3e52+2e5+ 1
> 325+ 2e5+1]
2> 75+25+1
2> 75+10+1
2> 85+1

> 86 <4=mmmm A value

Simplification

3e52+2¢5+1
> 325+ 2¢5+1
5 units 2> 75+25+1
of work 2 75+10+1
inSsteps | & 85+ 1
2> 86

1/27/16

Parallel Simplification

352 +2¢5+1
5 units 2> 325+10+1
of work = 75+11
In3steps [3 86

Abstraction

Algebraic expressions packaged up as functions:

f(x)=3x2+2x+1

We can take this as a definition of function f.

Function Definitions and Uses

Euler’s notation for uses, calls or applications of
function f:

f(5) f(2+2)

1. Simplify the argument to value V,
2. plug the value Vin for x,
3. simplify the result.

1/27/16

Simplification

f(2+2) 2> f(4)
> 342+ 204 +1
> 3¢16+2°4+1
2 48 +2°4+1
2> 48+8+1
2 56+1
> 57

Functions and Code

* Roughly speaking, a piece of computer
software is a collection of functions.

* In HS algebra our functions usually worked
with real numbers.

¢ In programming, there are lots and lots of
interesting types of inputs for our functions.

10

Code
OCaml:
letfx=3*x**2+b*x+c
Python:

def f(x):
return3 *x **2+b *x+c

1/27/16

Example: area of unit circle

Example: area of unit circle

11

Example: area of unit circle

1/27/16

Example: area of unit circle

Example: area of unit circle

12

Example: area of unit circle

1/27/16

Example: area of unit circle

Example: area of unit circle

13

Example: area of circle of radius 2

1/27/16

Example: area of circle of radius 2

Example: area of circle of radius r

3.14x12| |3.14x2

14

Example: area of circle of radius r

We want to
abstract with
respect to the
variation(s).

3.14x12| |3.14x2

1/27/16

Example: area of circle of radius r

A function definition
allows us to express
the abstraction.

3.14x12| |3.14x2

area(r) =3.14 x r?

Example: area of circle of radius r

A function definition
allows us to express
the abstraction.

‘ area(r) = 3.14 x r?

15

Example: area of circle of radius r

Our function

definition can now
be used or called by
providing an input.

area(3) > 3.14 x 32 | area(r) =3.14 x 12

= 3.14x9
- 28.26

1/27/16

In OCaml

let area radius = 3.14 *. radius ** 2.0;;

val area : float -> float = <fun>

area(2.0);;
- :float=12.56

In OCaml

let area radius =
let pi = acos (-1.)
in
pi *. radius ** 2.0;;

val area : float -> float = <fun>

16

Example: volume of a cylinder

height

1/27/16

In OCaml

let area radius =
let pi = acos (-1.)
in
pi *. radius ** 2.0

let volume radius height =
(area radius) *. height

Euclid’s GCD Algorithm, 300BCE

[m ifnis0,
ged(m, n) = 4
| gcd(n, m % n) otherwise

17

Euclid’s GCD Algorithm, 300BCE

[m ifnis0,
ged(m, n) = {
| gcd(n, m % n) otherwise

gcd(25, 10) = ged(10, 25 % 10)
=gcd(10, 5)
=gcd(5, 10 % 5)
=gcd(5, 0)
=5

1/27/16

Euclid’s GCD Algorithm, 300BCE

[m ifn=0,
ged(m, n) = {
[gcd(n, m % n) otherwise

letrecgcd mn =
match n = 0 with
| true ->m
| false -> gecd n (m mod n)

CS101 and CS102

* A principal theme of CS101 is mastering the
art of expressing algorithms as functions,
procedural abstraction.

* A principal theme of C5102 is mastering the
art of writing new types, (values and
functions), data abstraction.

18

How Programming Works

* Using an editor program, a programmer
develops the TEXT of a program in some
language, e.g., OCaml or Python

* They then use another program, a compiler, to
translate the text into the binary language of
the machine.

1/27/16

Programming (Basic Model)

:>Q:>:

Binary Program is in the native language of
the computer so the binary program can
be executed.

Programming (Basic Model)

:>Q:>:

Since each computer has it’s own native
language, a compiler that can produce
binaries for one computer won’t
necessarily be able to produce binaries
that will run on a different computer.

19

1/27/16

Programming (VM Model)

The Byte Code Program is in the
native language of a “virtual”
computer. The virtual machine (VM)
is just a program that can be
implemented on any computer, no
matter it’s binary language.

Computer Science

Programming (VM Model)

-8~
The VM runs on the /
computer and your

program “runs” on
the VM!

Course Admin

20

Course Admin
¢ Two 75-minute lectures each week;
No laptops/screens in lecture.
* One one-hour lab each week;

Laptops required in lab.

NB: FIRST LABS MEET THIS WEEK.

1/27/16

Tour of course website

Resources

* Extensive lecture notes

* Most of our material is covered in lecture,
background reading in OCaml from the
Beginning.

« Office hours, Piazza, the internet, your
colleagues

21

Grading

* 46% for 10 problem sets, plenty of
opportunity for extra credit

¢ 42% for 3 exams

* 12% for consistent course participation
— Lab, lecture, Piazza forum

1/27/16

How to Succeed in CS 1101

* Start problem sets right away!
* Pay careful attention to detail.
* Seek help when you need it.

* Show up consistently, participate in class, ask
questions.

Rules of the Road

* Late homework penalty 25% each day, penalty
excused for documented medical problems or
family emergencies only;

* Honor code strictly enforced.

22

