
First Exam
CS 1101 Computer Science I

Fall 2015

KEY

Tuesday October 6, 2015
Instructor Muller
Boston College

Before reading further, please arrange to have an empty seat on either side of you. Now that you are
seated, please write your name on the back of this exam.

This is a closed-notes and closed-book exam. Computers, calculators, and books are prohibited.

This is a 20 point exam. Answer all of questions 1.1, 1.2, 2.3, 2.5, 2.14 and 2.16. These
total to 12 points. Choose any other problems totaling to exactly 8 more points to arrive at 20. Circle the
numbers of the problems that you want graded. If you select a set of problems totaling to more than 20
points, they’ll be graded on scale of 20 points max and the lowest resulting problem scores will count toward
the total.

• Partial credit will be given so be sure to show your work.

• Feel free to write helper functions if you need them.

• Please write neatly.

Problem Points Out Of

1.1 1 Required
1.2 1 Required
2.1 1
2.2 2
2.3 2 Required
2.4 2
2.5 2 Required
2.6 2
2.7 2
2.8 2
2.9 2
2.10 2
2.11 2
2.12 3
2.13 3
2.14 3 Required
2.15 3
2.16 3 Required
2.17 3
2.18 5
Total 20

1

Section 1

1. (1 Point) For each of the following, indicate what would happen if the code was evaluated in an OCaml
REPL. If the code would produce an error, what error? If the code would produce a value, show all of
the simplification steps.

(a) let f x = x * 2;;

let g y = y * (f y);;

g(4 + 1);;

Answer:

g(4 + 1) --> g(5)

--> 5 * (f 5)

--> 5 * (5 * 2)

--> 5 * 10

--> 50

(b) let g x = x * z in

let f z = (g 0, g z)

in

f 4;;

Answer:

Error: Unbound variable z.

2. (1 Point) For each of the following, indicate what would happen if the code was evaluated in an OCaml
shell. If the code would produce a value, what value would it produce? If the code would produce an
error, what error?

(a) let f x y =

let g x = x + y

in

g (x + y)

in

f 1 (g 2);;

Answer:

Error unbound variable g.

(b) let f x y = x @ y in

let g x z = x @ (f z z)

in

g [’A’] [’B’]

Answer:

[’A’; ’B’; ’B’]

2

Section 2

1. (1 Point) OCaml’s Pervasives module has a two-argument function max : a’ -> ’a -> ’a that re-
turns the maximum of the two arguments. Write a three-argument version

val max3 : ’a -> ’a -> ’a -> ’a

For example, the call (max3 4 8 2) should evaluate to 8.

Answer:

(* max3 : ’a -> ’a -> ’a -> ’a

*)

let max3 m n o = max m (max n o)

2. (2 Points) Write a function maxList : ’a list -> ’a such that a call (maxList xs) returns the
largest element of xs. You may assume that xs is non-empty.

Answer:

(* maxList : ’a list -> ’a

*)

let rec maxList ns =

match ns with

| [] -> failwith "cannot happen"

| [n] -> n

| n::ns -> max n (maxList ns)

let maxList ns = List.fold_left max (List.hd ns) (List.tl ns)

3

3. (2 Points REQUIRED) Write a function count : ’a -> ’a list -> int such that a call (count x xs)

returns the number of occurrences of x in xs. For example, the call (count ’A’ [’A’; ’B’; ’A’])

should return 2.

Answer:

(* count : ’a -> ’a list -> int

*)

let rec count x xs =

match xs with

| [] -> 0

| y::ys -> (if x = y then 1 else 0) + (count x ys)

4. (2 Points) Write a function power : int -> int -> int such that a call (power m n) returns mn.
For example, the call (power 2 3) should return 8. Remember that any number raised to the 0 power
is 1.

Answer:

(* power : int -> int -> int

*)

let rec power m n =

match n = 0 with

| true -> 1

| false -> m * (power m (n - 1))

4

5. (2 Points REQUIRED) Write a function sumSquares : int list -> int such that a call (sumSquares ns)

returns the sum of the squares in ns. For example, the call (sumSquares [2; 3; 10]) should return
113 because 4 + 9 + 100 sums to 113.

Answer:

(* sumSquares : int list -> int

*)

let rec sumSquares ns =

match ns with

| [] -> 0

| n::ns -> (n * n) + (sumSquares ns)

let sumSquares ns =

let square n = n * n

in

List.fold_left (+) 0 (List.map square ns)

6. (2 Points) Write a function range : int -> int list such that a call (range n) returns the list
[0; 1; ...; n-1].

Answer:

(* range : int -> int list

*)

let range n =

let rec repeat i =

match i = n with

| true -> []

| false -> i::repeat (i + 1)

in

repeat 0

5

7. (2 Points) Write a function scanOver :’a -> ’a list -> ’a list such that a call (scanOver x xs)

returns a list consisting of the elements in xs to the right of the leftmost sequence of xs. For example,
the call (scanOver 1 [1; 1; 2; 1; 2; 3]) should evaluate to the list [2; 1; 2; 3] and the call
(scanOver 2 [1; 1; 2; 1; 2; 3]) should evaluate to the list [1; 1; 2; 1; 2; 3].

Answer:

(* scanOver : ’a -> ’a list -> ’a list

*)

let rec scanOver x xs =

match xs with

| [] -> []

| y::ys -> match x = y with

| true -> scanOver x ys

| false -> xs

8. (2 Points) Write a function removeAll : ’a -> ’a list -> ’a list such that a call (removeAll x xs)

returns a list that is just like xs but all the occurrences of x have been removed. For example, the call
(removeAll ’A’ [’A’; ’B’; ’C’; ’A’]) should evaluate to the list [’B’; ’C’].

Answer:

(* removeAll : ’a -> ’a list -> ’a list

*)

let rec removeAll x xs =

match xs with

| [] -> []

| y::ys -> let ans = removeAll x ys

in

match x = y with

| true -> ans

| false -> y::ans

6

9. (2 Points) Write a function nth : int -> ’a list -> ’a such that a call (nth n xs) returns the
nth element of xs, where the first element of the list is at index 0 and so forth. If n is greater than the
length of the list your function should raise failwith.

Answer:

(* nth : int -> ’a list -> ’a

*)

let rec nth n xs =

match (n, xs) with

| (_, []) -> failwith "cannot retrieve nth element of empty list"

| (0, x::_) -> x

| (n, _::xs) -> nth (n - 1) xs

10. (2 Points) Write a function removeNth : int -> ’a list -> ’a list such that a call (removeNth n xs)

returns the list that is just like xs except that the nth element is gone. If n is greater than the length
of the list, raise a failwith.

Answer:

(* removeNth : int -> ’a list -> ’a list

*)

let rec removeNth n xs =

match (n, xs) with

| (_, []) -> failwith "cannot drop nth element from empty list"

| (0, _::xs) -> xs

| (n, x::xs) -> x::removeNth (n - 1) xs

7

11. (2 Points) Write a function powers : int -> int -> int list such that a call (powers m n) returns
the list consisting of all of the powers of m from 0 to n. For example, the call (powers 2 8) should
return the list [1; 2; 4; 8; 16; 32; 64; 128; 256].

Answer:

(* powers : int -> int -> int list

*)

let rec powers m n =

let rec repeat n acc =

match n < 0 with

| true -> acc

| false -> repeat (n - 1) ((power m n)::acc)

in

repeat n []

let powers m n = List.map (fun n -> power m n) (range n)

12. (3 Points) The proper divisors of an integer n are the integer divisors that are less than n. For example,
the proper divisors of 6 are 1, 2 and 3 and the proper divisors of 8 are 1, 2 and 4. A number is said
to be perfect if it is equal to the sum of its proper divisors. For example, both 6 and 28 are perfect.
Write a function isPerfect : int -> bool such that a call (isPerfect n) returns true if and only
if n is perfect.

Answer:

let properFactors n =

let rec repeat c =

match c <= n / 2 with

| true -> let answer = repeat (c + 1)

in

(match n mod c = 0 with

| true -> c::answer

| false -> answer)

| false -> []

in

1::repeat 2

(* isPerfect : int -> bool

*)

let isPerfect n = List.fold_left (+) 0 (properFactors n) = n

8

13. (3 Points) Write a function crissCross : int -> int -> Image.t -> Image.t such that a call
(crissCross m n image) returns a new image with crossing gold and maroon stripes. The first
argument specifies the grid size and the second specifies the row and column where the stripes are
placed. For example, executing the code:

(* crissCross : int -> int -> Image.t -> Image.t

*)

let crissCross m n image = YOUR CODE

let draw _ = crissCross 5 4 (Image.empty_scene displayWidth displayHeight)

let _ = World.big_bang ()

~name:"CrissCross"

~width:(Cs1101.f2I displayWidth)

~height:(Cs1101.f2I displayHeight)

~to_draw:draw

should return the image:

Answer:

(* crissCross : int -> int -> Image.t -> Image.t

*)

let crissCross m n image =

let size = displayWidth /. (float m) in

let criss = Image.rectangle size displayHeight Color.maroon in

let cross = Image.rectangle displayWidth size Color.gold in

let xy = (float (n - 1)) *. size in

let image1 = Image.place_image criss (xy, 0.) image

in

Image.place_image cross (0., xy) image1

9

14. (3 Points REQUIRED) An election is coming and the city of Indianapolis is hosting a debate. But there
are too many candidates! Party elders have decided to invite only those candidates whose poll numbers
are above average. Write a function qualifiers : (string * int) list -> string list such that
a call (qualifiers [(name1, poll1); ...; (namek, pollk)]) returns the list of candidates whose
poll numbers are above average relative to the other candidates in the list.

Answer:

let qualifiers candidates =

let n = List.length candidates in

let polls = List.map snd candidates in

let average = (List.fold_left (+) 0 polls) / n in

let rec cull candidates =

match candidates with

| [] -> []

| (name, p)::rest -> match p > average with

| true -> name::cull rest

| false -> cull rest

in

cull candidates

15. (3 Points) Write a function shuffle : int list -> int list such that a call (shuffle ns) returns
a list consisting of the integers in ns but in random order.

Answer:

(* shuffle : int list -> int list

*)

let shuffle xs =

let rec doShuffle xs acc =

match xs with

| [] -> acc

| _ -> let n = Random.int (List.length xs) in

let (pick, newList) = (nth n xs, dropNth n xs)

in

doShuffle newList (pick::acc)

in

doShuffle xs []

10

16. (3 Points REQUIRED) Many types of data such as audio or video contain long sequences of repeated
values. For example, in audio, most of the sampled frequencies have 0 values for long stretches of time.
In the run length encoding system, sequences of repeated values v v ... v are represented efficiently
by pairs (v, n) where n is the length of the sequence. Write a function

runLengthEncoding : ’a list -> (’a * int) list

such that a call (runLengthEncoding [x1; ...; xn]) returns a list of pairs [(x1, n1); (x2, n2); ...]

where the input list [x1; ...; xn] starts out with a sequence of n1 x1s, followed by n2 x2s and so
forth. For example, the call (runLengthEncoding [0; 0; 0; 1; 1; 0; 0; 0; 0]) should return the
list of pairs [(0, 3); (1, 2); (0, 4)].

Answer:

let rec runLength x xs =

match xs with

| [] -> 1

| y::ys -> (match x = y with

| false -> 1

| true -> 1 + (runLength x ys))

(* runLengthEncoding : ’a list -> (’a * int) list

*)

let rec runLengthEncoding items =

match items with

| [] -> []

| item::items ->

let itemCount = runLength item items in

let followers = scanOver item items

in

(item, itemCount)::runLengthEncoding followers

17. (3 Points) Write a function mostCommon : ’a list -> (’a * int) such that a call

(mostCommon [x1; ...; xn])

returns a pair (x, n) where x is the most commonly occurring item in xs and n is the number of times
it occurred. For example, the call (mostCommon [’A’; ’B’; ’A’]) should return the pair (’A’, 2).
You may assume that the list is non-empty and you may return any winner in the case of ties.

Answer:

let rec pairMax pairs =

match pairs with

| [] -> failwith "pairMax: empty list has no max."

| [(name, count)] -> (name, count)

| (name1, count1)::(name2, count2)::rest ->

match name1 > name2 with

| true -> pairMax ((name1, count1)::rest)

| false -> pairMax ((name2, count2)::rest)

(* mostCommon : ’a list -> (’a * int)

*)

let mostCommon xs = pairMax (List.map (fun x -> (x, count x xs)) xs)

11

18. (5 Points) Write a function histogram : float list -> float -> Image.t such that a call

(histogram [x1; ...; xn] max)

returns an Image.t with n equal-width vertical bars whose heights are proportional to the respective
elements of the list. For example, executing the code:

(* histogram : float list -> float -> Image.t

*)

let histogram data max = YOUR CODE

let draw _ = (histogram [1.; 2.; 3.; 4.; 5.] 5.0)

let _ = World.big_bang ()

~name:"Histogram"

~width:(Cs1101.f2I displayWidth)

~height:(Cs1101.f2I displayHeight)

~to_draw:draw

should produce the image:

12

Answer:

(* histogram : float list -> float -> Image.t

*)

let histogram data max =

let n = List.length data in

let width = displayWidth /. (float n) in

let shadeIncrement = 255 / n in

let rec repeat i ns image =

match ns with

| [] -> image

| m::ms -> let height = m /. max *. displayHeight in

let shade = i * shadeIncrement in

let color = Color.make_color shade shade shade in

let bar = Image.rectangle width height color in

let x = (float i) *. width in

let y = displayHeight -. height in

let newImage = Image.place_image bar (x, y) image

in

repeat (i + 1) ms newImage

in

repeat 0 data (Image.empty_scene displayWidth displayHeight)

let draw _ = histogram [1.; 2.; 3.; 4.; 5.] 5.0

let _ = World.big_bang ()

~name:"Histogram"

~width:(Cs1101.f2I displayWidth)

~height:(Cs1101.f2I displayHeight)

~to_draw:draw

13

