
CSCI 3357: Database System Implementation
Homework Assignment 5

Due Wednesday, October 16

 SimpleDB currently uses timeout to detect deadlock. Change it so that it uses the wait-
die deadlock detection strategy, as described in Figure 5.22 of the text. Your code
should modify the class LockTable as follows:

• The methods sLock, xLock, and unLock will need to take the transaction’s id as
an argument.

• The variable locks must be changed so that a block maps to a list of the
transaction ids that hold a lock on the block (instead of just an integer). Use a
negative transaction id to denote an exclusive lock.

• Each time through the while loop in sLock and xLock, check to see if the thread
needs to be aborted (that is, if there is a transaction on the list that is older than the
current transaction). If so, then the code should throw a LockAbortException.

• You will also need to make trivial modifications to the classes Transaction and
ConcurrencyMgr so that the transaction id gets passed to the lock manager
methods. I'm sure you can figure out what those changes must be.

My solution required replacing a lot of code, but the resulting amount of code did not
change much.

I have included the test program HW5Test for you to download. This program is similar
to the class ConcurrencyTest of Figure 5.19 in the text. It creates three transactions,
each in their own thread. Transactions A and C both need a lock held by transaction B.
Under the wait-die algorithm, transaction A should wait, whereas transaction C should
throw an exception. When I run the program on my solution, I get the following output:

new transaction: 1
Transaction A starts
Tx A: request slock block 1
Tx A: receive slock block 1
new transaction: 2
Transaction B starts
Tx B: request xlock block 2
Tx B: receive xlock block 2
new transaction: 3
Transaction C starts
Tx C: request xlock block 1
Transaction C aborts
transaction 3 rolled back
Tx A: request slock block 2
Tx B: request slock block 1
Tx B: receive slock block 1
transaction 2 committed
Transaction B commits
Tx A: receive slock block 2
transaction 1 committed
Transaction A commits

