Problem Set 5—Public key Cryptography

CSCI3381-Cryptography
Due Monday, March 27

This assignment consists exclusively of programming problems. In the first part,
you are to implement a variety of attacks on ’textbook’ RSA. The second part is devoted
to Diffie-Hellman key exchange and ElGamal encryption. There are eight problems;
each one is worth twenty points. A ‘perfect’ score is 100. You will receive extra credit
if you do more than five problems.

1 RSA

Each of these problems contains an RSA ciphertext encrypted with a 1024-bit modulus,
but in each case it is possible to recover the plaintext by attacking some weakness in the
implementation. As we discussed in class, RSA encryption is usually used to encrypt
keys for symmetric ciphers, but I do try to make the solutions a little more amusing
to read than a random key: RSA decryption gives the plaintext as an integer, but you
should convert your solution to an ASCII string; when you do this, Problems 1-4 give
readable (even singable!) answers, and Problem 5 is a very short message appropriate
for this class.

As you work these problems, think about which of these are vulnerable because of
the absence of padding, and which because of poor practice in generating keys. Which
of the attacks recover the decryption key, and which recover only the plaintext?

1. Short message, small exponent The ciphertext for Problem 1 was obtained by en-
crypting ASCII plaintext with exponent = 3 and the given modulus. Viewed as an
integer, however, the plaintext message m satisfies m3 < N, where N is the modulus.
(You have to take an exact cube root, which you should have solved on the previous
assignment.)

2. Small exponent. A single message was encrypted using three different RSA moduli,
all with exponent e = 3. The three ciphertexts and moduli are given in the accom-
panying web page. Find the plaintext. (You have to apply the Chinese Remainder
Theorem.)

3. Common Modulus Everyone in Alice’s office is given an RSA public-private key
pair with the same modulus. Alice’s encryption exponent is 5, and she sees that Alicia’s
encryption exponent is 3. Alice intercepts an encrypted message from Roberto to Alicia
and is able to decrypt it, and so are you. (Alice can use her own private key to factor
the modulus.)



4. Common Factor Alex, on the other hand, uses different moduli to generate the RSA
keys used by her staff, but admits that she has a ‘lucky prime’ that she uses to generate
all these keys. Eva uses this information, and the moduli of two of the staff members,
and decrypts messages sent to each of them. Find the plaintexts. (Eva can easily factor
both moduli.)

5. Small Message. The plaintext is a very brief ASCII text. You are given the modulus,
encryption exponent, and ciphertext. If we view the plaintext as an integer m, we have
m > 10, so it would take quite a long time to try out every possibility in a slowpoke
language like Python. But this integer factors into two integers each less than four
million. Find the plaintext. (Use a meet-in-the-middle attack: If c is the ciphertext, and
m = mymy the message, then cmj © = m§ (mod N).)

2 Diffie-Hellman and El Gamal

Let’s recall briefly what the fundamental algorithms are. In the Diffie-Hellman key
agreement protocol, Alice and Bob agree publicly on a large prime p and a primitive
element g mod p. ! Alice generates a secret value 1 < 2 < p, and Bob similarly
generates 1 <y < p.

Alice sends g” mod p to Bob, and Bob sends g¥ mod p to Alice. Each of them cou-
ples this information they receive with their secret information to compute the shared
secret ¢”Y mod p.

All our problems concern the variant of Diffie-Hellman called the El Gamal public
key cryptosystem. Here, Alice keeps x as her secret key and publishes (p, g, g* mod p)
as her public encryption key. Messages are integers m in the range 1 < m < p. To
encrypt this message, Bob generates a random 1 < y < p and sends

(= g¥ mod p, 8 = (¢*¥ - m) mod p)

to Alice. To decrypt, Alice takes the first component o and her secret value x to com-
pute ¢g”¥ mod p, then computes its inverse g~ *¥ mod p, and multiplies this by the
second component 3 of Bob’s message to recover m.

In the problems below, the messages are brief ASCII texts that have been converted,
as usual, into sequences of bytes and then into long integers. You should convert the
decrypted value back into text. All the parameters and messages are given on the
accompanying web page.

You need not hand this in, but you should verify that p is prime and that g = 5 is a
primitive element mod p. To show that g is a primitive element, you should verify that
p = 2q+ 1 for a prime g and verify that g mod p # 1 and g2 mod p # 1 (and be able
to explain why this shows that g is primitive.)

6. Alice’s public and private parameters and Bob’s message pair («, S2) are given on
the Web page. Decrypt Bob’s message.

!In practice g is often not actually a primitive element mod p, but rather an element such that the cycle
of powers of g contains a large prime number of elements. In our present example, 25 = 52 would be such
a value for g.



7. Bob sends Alice another pair (as, 82). It is later revealed that the message sent was
Now my charms are all o’erthrown and what strength I have’s mine own.

Subsequently, Eve intercepts yet another message (2, 83), and notices that it has
the same first component as the previous message. This is because Bob made the fatal
error of reusing his random value y. Decrypt this new message.

8. I did not give you just any old pair (p, g). This is the pair used by what was, until
recently, the Discrete Log record holder. The website also contains the value ay =
g¥ mod p whose discrete log was successfully computed, and the discrete log y itself.
Eve intercepts Bob’s communciation (4, 4) to Alice, and uses this priceless discrete
log information to decrypt the message.

You are assuming here that the value whose discrete log was known is sent as the
first component of Bob’s message to Alice. What would be the result if this value were
posted as the first component of Alice’s public key?

The moral of problem 7, if you didn’t catch it, is that Bob cannot reuse his secret
value y. The moral of problem 8 is that p must be large enough to beat the best tech-
nology for computing discrete logs. In this example, p has 180 decimal digits, roughly
600 bits. For this reason, 1024 bits is considered an appropriate size.

3 What to Hand In

The Python functions you submit should be labeled probleml, problem2, ...problem8
and be contained in a single file. I have also dealt with the fact that the originally posted
version of the assignment had no problem 5 and two problem 6’s, and corrected this. A
short text document giving the plaintext solutions should also be supplied. The Python
functions should go into a single file called FirstInitialLastNameHWS5.py, and put into
a folder FirstInitialLastName along with the text document, then submitted.

Here are the required formats of the functions:

e probleml should take two arguments: the base-64 encoded ciphertext and the
modulus N. If the attack works, the function should return the plaintext as an
ASCII string. If the attack fails (because the message m is too large), it should
return some sort of error message. You can include the kthroot function from the
previous assignment in your file, and call it in your function.

e problem2 should take 6 arguments: the three ciphertexts encoded in base-
64, and the 3 corresponding moduli, in that order. It should return the ASCII
plaintext.

e problem3 should take three arguments: The base-64 encoded ciphertext, the
decryption exponent corresponding to the encryption exponent e = 5, and the
common modulus. It should return the ASCII plaintext.

e problem4 takes four arguments: The two base-64 encoded ciphertexts, and
the two moduli. You can hard-code the encryption exponent 65537 into your



function. It should return the ASCII plaintext in the event that the attack succeeds
(because a common prime factor was found), and some kind of error message in
the event of a failure.

problemb takes three arguments: the base-64 encoded ciphertext, the modulus,
and the encryption exponent. It should return the ASCII plaintext in the event
that the attack succeed, and an error message for a failure.

problemé6 takes the following 6 arguments:

P, 9,9 mod p,z,a, 3,

where the first three components are Alice’s public parameters, x is Alice’s secret
information, and «, 8 are the components of Bob’s message. It should return the
ASCII plaintext. This is the function Alice uses to decrypt normal traffic.

In the next three functions the secret x is absent from the parameter list, because
these are the functions the attacker uses to break the encryption on intercepted
messages.

problem?7 takes parameters
. g,9" mod p,a, B,m, 3.

Here m is an ASCII string, the decryption of the ciphertext («, 5). The function
should return the decryption of («, 3').

problem8 takes the parameters

(p.g,9" mod p,a, B,y).

Here y is the discrete log of .. The function returns the ASCII plaintext.



