
Assignment 6–Hash Functions

CSCI3381-Cryptography

Due Wednesday, April 5

There’s really only one problem here, but at three different levels: Use the birthday
attack to generate a collision in a reduced version of SHA-1 (just a 40-bit hash). To
find the hash value of a string s, you can execute the following Python code:

import hashlib
hashval=hashlib.sha1(s).hexdigest()

We will use the high-order 40 bits (ten hex digits) as the ’hash value’, so as to make
this problem do-able.

Problem 2 is harder than Problem 1, and Problem 3 is harder than Problem 2. You
get 60 points for a completely successful solution of Problem 1, 80 for Problem 2 (in
which case you don’t have to hand in Problem 1), 100 for Problem 3 (in which case
you don’t have to hand in 1 or 2).

1 Basic birthday attack on a 40-bit hash
Write a function birthday1() that returns a tuple (s, t, n), where s and t are dif-
ferent ASCII strings whose SHA-1 hashes have the same high-order 40 bits (same 10
initial hex digits). The last component n of the return value is the number of calls to
SHA-1. Again, you can generate random ASCII strings by converting random integers
to hex. By the theory of these birthday attacks, you will need to compute somewhat
more than 1 million hashes to find this collision with probability greater than 1/2. The
simplest way to do it is to repeatedly generate random strings s and enter the pair

SHA-1(s):s

in a Python dictionary structure. When you find a hash value that’s already in the
dictionary, you’re done. Include two different colliding pairs of strings in your writeup.

2 Low-memory birthday attack on a 40-bit hash
The birthday attack in the preceding problem required a dictionary with 1 million+
items. Implement the Floyd cycle-finding algorithm described in the notes to generate
the same kind of collision using almost no memory. Call the function birthday2().
The return value should have the same format. Note that you will require a larger

1

number of calls to the hash function, because each step of the initial phase of the
algorithm requires the computation of three hashes:

(xi, x2i) 7→ (h(xi), h(h(x2i)) = (xi+1, x2(i+1)),

and each step of the second phase requires the computation of two hashes. Using dif-
ferent starting points will give you different collisions. Include two different colliding
pairs of strings in your writeup.

3 Low-memory birthday attack with a meaningful col-
lision.

Produce a pair of meaningful ASCII texts that will permit you to cheat at the coin-
tossing-by-telephone game. Announce that you are writing out your guess of the out-
come of the coin toss, and storing it in a text file. You then provide a hash of the text
to your friend. After he announces the outcome of the toss, you send him the text file,
and he uses the hash function applied to the text to verify that the guess you provided
was correct. Of course you have stored two different text files, and wait until the toss
is announced to decide which one to send him.

The function you write, birthday3(), should again return a triple (s, t, n) with
the SHA-1 hashes of s and t agreeing in the high-order 40 bits, but this time s and t
will be something like,

I <your name> have a prediction.
I predict that the coin you are tossing
will come up heads.

I, <your name> believe
that that penny you are
about to toss will show tails.

Here is the trick: Implement a function that takes as input a 40-bit string b and produces
as output an ASCII string f(b) having one of the formats above. If the rightmost bit
of b is 0, the last word of the message is ’tails’, if the rightmost bit is 1, the last word
of the message is ’heads’. Use other bits of the message to guide a choice between
two words that will not change the meaning of the message. For example, you could
construct the messages as

I <,|> Howard Straubing <, |>
<do |> <hereby|> <guess|predict>
<the following outcome|this result> ...

If you put 30 or so such choice points within the message then more than one billion
different messages are possible. Now, use the Floyd cycle-finding algorithm to find a
collision, not in the reduced hash function H, but in the function

K(x) = H(f(x)).

2

A collision means that you will have two ASCII messages x1, x2 such that H(f(x1)) =
H(f(x2)). It is possible that x1, x2 both predict heads, or both predict tails. In that
case, you should run the algorithm again. In about half of all trials, you will find
messages predicting opposite results that collide. Include the two text files with your
submission. (Executing the two lines

hashlib.sha1(open(’file1.txt’,’r’).read()).hexdigest[10]
hashlib.sha1(open(’file2.txt’,’r’).read()).hexdigest[10]

should give identical values.)

3

