
CSCI3381-Cryptography

Lecture 1

January 17, 2017

1 What Does Cryptography Do?

When you visit a secure website—for example, when you go to your bank’s web-
site to pay bills—you and the other party (in this example, the bank) have to be
sure about a number of things.

• Is this really the bank’s website? (Can someone operate a website that you
mistake for the bank’s?)

• Are you really the account’s owner? (Can someone impersonate you, gain
access to your account information, and make payments from your account?)

• Is the information you and the bank exchange private? (Can someone eaves-
drop and obtain the information?)

• Is the information you and the bank receive from one another identical to the
information that was sent? (Can someone alter the information without the
alteration being detected?)

An extraordinary sequence of computations takes place to provide each of these
services. This course is about what is behind those computations. Cryptography
studies methods for obtaining secure communication in the presence of malicious
adversaries.

2 Symmetric Encryption

We start the course with methods for achieving the privacy goal listed above. This
is probably what most people think of when they think of cryptography.

1

2.1 Terms to know

• Plaintext, Ciphertext

• Encryption Algorithm, Decryption Algorithm, Key

• Kerckhoffs’ Principle

• Ciphertext-only attack; Known-plaintext attack, Chosen-plaintext attack, Chosen-
ciphertext attack

• Brute-force (= exhaustive search) attack

2.2 Alice, Bob, and Eve

• Alice wants to send a message (the plaintext p) to Bob. Think of p as a string
of text characters, or as a string of bits.

• An eavesdropper Eve is able to monitor the communication channel and read
p.

• To avoid this, Alice encrypts p: Alice and Bob share some secret informa-
tion, a string k called the key. The encryption algorithm E has two inputs,
the plaintext p and the key k, and produces as output the ciphertext

c = E(k, p).

(Figure 1.)

• Although Eve can read c, it is pure gibberish and she is unable to learn any-
thing about the plaintext message from it.

• When Bob receives c, he applies the decryption algorithm D to recover the
plaintext

p = D(k, c).

In real life, Alice might be a military commander and Bob an officer in the
field. Or, in more modern and familiar terms, Alice is the customer of an online
store Bob.com. Or, Alice is your computer and Bob the WiFi router in the next
room. Or, Alice and Bob are the same person: Alice encrypts new data on her
laptop and decrypts it to read it later; Eve is someone who steals the laptop, or
hacks into it remotely.

There’s an interesting question about exactly how Alice and Bob agree on the
key k. This is not a problem in the scenarios concerning the WiFi router or the

2

encryption of Alice’s local data, but it is a BIG problem in the online shopping
scenario. We will deal with this question in the second half of the course.

Figure 1: The basic model for symmetric encryption. Eve can read the ciphertext c
and knows the encryption and decryption algorithms D and E, but without access
to the key k she cannot get any information about the plaintext p.

2.3 Mathematical Formalism

We denote byK the key space–the set of possible keys. In most of our applications,
K will be a set of bit strings of a fixed length, although our first examples will
involve strings of letters of the alphabet. We denote byM the message space–the
set of possible messages, including both plaintext and ciphertext messages. Thus
E and D are both functions

E : K ×M→M, D : K ×M→M.

Note that while K is usually taken to be a finite set,M will at times be viewed
as infinite (e.g., the set of all finite bit strings), at other times as consisting of just the
finite set of messages of a fixed length. We denote by |K| the cardinality (number
of elements) of the set K. We use the same absolute value notation for strings as
well as sets, but now to denote the length of the string. For example, if Kis the set
of bit strings of length 5, then |K| = 32, while k = 01101 ∈ K, and |k| = 5.

3

2.4 Requirements

Most of these requirements were formulated in the 1880’s by Auguste Kerckhoffs,
although they are here presented in modern language. The last (and surprising) one
is what is usually called Kerckhoffs’ Principle.

• Decryption reverses encryption: that is, for all k ∈ K, m ∈M

D(k,E(k,M)) = M.

Put another way, for each K ∈ K, the maps

Dk, Ek :M→M,

defined by
Dk(m) = D(k,m), Ek(m) = E(k,m),

are mutually inverse bijections.

• Encryption and decryption are easy to compute (if you know the key). What
this means in practice is that the time required to compute D(k,m) and
E(k,m) should be linear in |m| (proportional to the length of the message).

• Decryption should be for all practical purposes impossible to carry out with-
out the key. That is, there should be no practical algorithm for recovering m
just from knowledge of the ciphertext E(k,m), We will see later exactly
what is meant by ‘impossible for all practical purposes’. (In the lingo of
computational complexity, we usually say ‘infeasible’ in preference to ‘im-
possible’.)

• The system should remain secure even if Eve knows the algorithms for com-
puting D and E. That is, the only part of the system required to be secret is
the shared key k.

The last point needs some explanation. The encryption and decryption algo-
rithms we use on a daily basis are embedded in our Web browsers, wireless cards
and routers, and the like, and are therefore already available for Eve’s inspection.
But Kerckhoffs was talking about military cryptography, not about WiFi and the
Internet; still, the danger of relying on secrecy of a cryptographic system was still
apparent to him. If a lot of people need to know how the system works, then there
is a good chance that this information will be leaked. If a system compromised in
this way is required to be secret, then it would have to be replaced by a completely
new system, and these are extremely difficult to design. On the other hand, if a

4

key is compromised, one only has to choose a new key. The danger of ignoring
Kerckhoffs’ principle has been demonstrated many times: poorly designed crypto-
graphic systems whose inventors hoped to protect through secrecy generally wind
up being broken.

2.5 Brute-force attack and the size of the key

Since we suppose that Eve knows the encryption and decryption algorithms, she is
able to launch the following attack if she intercepts a ciphertext C: For each key
k ∈ K, compute P = D(k, c). Presumably only one of these candidate plaintexts
p will make any sense, and Eve will accept this as the result.

This is a brute-force, or exhaustive search attack. In order to preserve our
requirement that the recovery of the plaintext be ‘for all practical purposes’ impos-
sible, the size of the key space K must be so large that only a tiny fraction of it can
be searched in practice.

How large is this? We will look at the question more closely later on, but we can
establish some back-of-the-envelope benchmarks. One billion (109) decryptions
per second might be feasible on special-purpose fast parallel hardware. Let’s be
generous and allow Eve the power to perform one trillion (1012) decryptions per
second. After more than ten years of work on the problem, the plaintext will likely
lose any importance to the attacker. Again, let’s add a fudge factor and allow Eve
to decrypt for one hundred years. The number of seconds in one hundred years is
slightly more than three billion (3× 109). Multiplied by one trillion, this gives Eve
the possibility of performing 3 × 1021 decryptions. This is around 272. If the key
is represented by a string of bits, we would require 72 bits for the key. You will
often see 80 bits used as a kind of benchmark for security against exhaustive search
attacks. (This is a moving target, and technological advances can change the story.
We will see a more sophisticated general approach to this problem later.)

3 Information available to the attacker

There are several different kinds of attacks that Eve can launch, depending on the
information available to her. Systems that are secure against the weakest kind of
attack (ciphertext-only) may be vulnerable to the stronger attacks.

• Ciphertext-only attack. Eve only has the intercepted ciphertexts at her dis-
posal, and uses these to infer the plaintexts.

• Known-plaintext attack. Eve knows several pairs (p.c) where C = E(p, k).
For instance, she might have guessed correctly that the first few intercepted

5

ciphertexts are encryptions of a boilerplate header used on all messages. She
uses these pairs to help deduce the plaintexts associated with other cipher-
texts.

• Chosen-plaintext attack. Eve is able to obtain the encryptions of plaintexts
that she chooses herself.

• Chosen-ciphertext attack. Eve is able to obtain decryptions of ciphertexts
she chooses herself.

Chosen-plaintext and chosen-ciphertext attacks may seem far-fetched, but there
are real-life instances. (A chosen-plaintext attack by US on partially-broken Japanese
cipher in World War II revealed the location of impending attack on Midway Island.
Some systems that respond with error messages for improperly-formed ciphertexts
have been shown to be vulnerable to chosen-ciphertext attacks that can actually be
carried out in practice.)

6

