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By tweaking the Vigenère cipher in a simple way, we obtain an encryption
method called the one-time pad, or Vernam cipher. We show the following prop-
erties of the one-time pad.

• The one-time pad possesses a special property called perfect secrecy. Essen-
tially this means that an attacker obtains no information about the plaintext
from the ciphertext.

• Perfect secrecy notwithstanding, the one-time pad has several serious de-
fects: a key can never be reused. Furthermore, messages encrypted with a
one-time pad are malleable: an attacker can meaningfully alter a message
even if they are unable to decrypt the entire message.

• Perfect secrecy comes at a price: We prove that perfect secrecy requires the
key to be as long as the plaintext.

1 The one-time pad.
This is essentially the Vigenère cipher, or rather the binary version of the Vigenére
cipher, in which the key block does not repeat: thus the key has the same length
as the message. Formally,

K =M = {0, 1}n

for some n > 0. That is, both the key and the message are bit strings of some fixed
length n. We set for any k,m ∈ {0, 1}n,

E(k,m) = k ⊕m.
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As with the Vigenère cipher, the decryption function is identical to the encryption
function.
Example. Suppose the plaintext message p is

Attack!

and the key k is

Win@War

Note that both strings are 7 characters long, so in this case, n = 7×8 = 56. These
ASCII strings are encoded as sequences of bytes, and the ciphertext is

c = E(k, p) = p⊕ k.

The resulting sequence of bytes is not printable when represented as an ASCII
string, but we can represent it in hex as

16 1d 1a 21 34 0a 53

Now suppose we have a second plaintext message p2:

Retreat

Set
k′ = c⊕ p2 = k ⊕ p1 ⊕ p2.

(Incidentally, in this example k′ is DxnSQk’.) Then

E(k′, p2) = k′ ⊕ p2 = c⊕ p2 ⊕ p2 = c.

In other words, on intercepting the ciphertext c, the attacker cannot tell whether
the plaintext is Attack!, or Retreat or, for that matter, any other 7-byte string.
This is what we mean, roughly, when we say that the attacker obtains no informa-
tion about the plaintext from the ciphertext.

Observe that while the original key k is printable and in more or less normal
English, the new key is likely to be neither. If the attacker can expect that intel-
ligible keys will be used, then the system is no longer perfectly secret, as certain
plaintexts can then be ruled out. It is important that the key be chosen uniformly
at random from the set of all possible keys.
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2 Perfect secrecy formally defined
It’s not really true that the one-time pad reveals no information about plaintexts
from ciphertexts alone: If we use this scheme to encrypt messages of various
lengths, the length of the ciphertext will always tell us the length of the plaintext.

If you think about it, this is true of any cryptographic system that allows en-
cryption of messages of arbitrary length: Long messages cannot have short en-
cryptions. (See the homework exercises for more precision on this point.) Thus
when we say that ciphertext reveals no information about plaintext, we really
mean to restrict to systems where all the messages have the same length.

So consider a cryptographic system where M = {0, 1}r. Fix a pair of ele-
ments m, c ∈ M. How likely is it that c is the encryption of m? We denote this
probability

Prk∈K(c = Ek(m)).

The underlying probability space is the set of all keys in K with the uniform
distribution. The probability is accordingly

|{k ∈ K : c = Ek(m)}|
|K|

.

We say the system has perfect secrecy if for all m1,m2, c ∈M,

Prk∈K(c = Ek(m1)) = Prk∈K(c = Ek(m2)).

Equivalently,

|{k ∈ K : c = Ek(m1)}| = |{k ∈ K : c = Ek(m2)}|.

(Again, remember that we are assuming all messages have the same length.)

3 The one-time pad has perfect secrecy
The proof that the one-time pad has perfect secrecy is trivial: For any m, c ∈
{0, 1}n, there is exactly one k such that Ek(m) = c, namely

k = c⊕m.

Thus for any m1,m2, c ∈M,

|{k ∈ K : c = Ek(m1)}| = 1 = |{k ∈ K : c = Ek(m2)}|.
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4 What is ‘one-time’ about the one-time pad?
If we use the one-time pad to encrypt several different messages with the same
key, then a great deal of information is leaked. For example, if m1, . . . ,mq are
ordinary English text in ASCII, all of the same length, and

ci = k ⊕mi

for all i, then we can carry out the attack of Assignment 1: The set of first bytes of
all q of the ci has an English-like distribution, and by trying out all 256 possibilities
for the first byte of k, we recover the first byte of all of the mi. We recover all
the other plaintext bytes in the same manner. In fact, using the one-time pad
repeatedly with the same key k is effectively the Vigenère cipher with key k,
where the plaintext is the concatenation of all the plaintexts mi. This will work as
long as q is not too short, q = 20 or 30 is probably sufficient.

Even if we only use the one-time pad twice, that is, if we take q = 2, some
information is still leaked. We have c1⊕c2 = m1⊕m2, so at the very least, we can
determine all the bytes where the plaintexts m1,m2 agree and where they disagree.
In fact, if m1,m2 are long enough messages in English, then it is possible to
recover the complete plaintext.

5 Malleability
The attacker Eve can meaningfully alter an intercepted ciphetext, even if she can-
not decrypt it. Let us suppose, for example, that we know, or strongly suspect,
that plaintext of the intercepted message begins with a standard header:

’FROM: Alice \n’

There are thirteen characters, including spaces and the newline character, in the
message above. We can use this together with the ciphertext to recover the first
eleven bytes k′ of the key k. This gives us absolutely no help in deciphering what
the message from Alice actually is. However, we now have enough information
to modify the first few bytes of the ciphertext, so that when the altered message is
decrypted with k, it will now begin:

’FROM: Joe \n’
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(Two additional spaces have been inserted.) Eve can forward the modified cipher-
text to the intended recipient, who will now believe that it was sent from Joe.

In general, a secure system for encryption and decryption does nothing to
guarantee authenticity of the received message. We will study the problem of
message authentication later.

6 Perfect secrecy requires keys as long as the mes-
sages

The inconvenience of the one-time pad comes at a price. We have to have as
many bytes of key as bytes we are encrypting, so both sender and recipient have
to be equipped with an essentially unlimited supply of randomly-generated bytes
in order to encrypt and decrypt a large volume of traffic. We prove here that this
is unavoidable:

Theorem 1 In a perfectly secret cryptosystem with keyspaceK and message space
M,

|K| ≥ |M|.

For example, if we are encrypting n-bit messages, then |M| = 2n. The theo-
rem tells us that there must be at least 2n keys, and thus if we use fixed-length bit
strings as keys, keys must be at least n bits long, which is exactly what we see in
the one-time pad.
Proof. Suppose |K| < |M|. We will show that the system is not perfectly secret.
Pick c ∈M, and let

U = {Dk(c) : k ∈ K}.

Then |U| ≤ |K| < |M|, so U (M. Thus we can pick m1 ∈ U and m2 ∈ M\U .
We then have

|{k ∈ K : c = Ek(m1)}| ≥ 1,

and
|{k ∈ K : c = Ek(m2)}| = 0,

so we cannot have perfect secrecy.
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7 An equivalent definition of perfect secrecy: Indis-
tinguishability experiment.

We give an equivalent definition of perfect secrecy. This is more complicated
than our original definition, but we will later see that by tweaking this definition,
we will arrive at a definition of security for systems that do not possess perfect
secrecy.

We describe a probabilistic experiment involving two parties, the adversary
and the challenger: The adversary claims that the system is insecure, and the
challenger challenges the adversary to demonstrate this. The experiment proceeds
as follows:

• The challenger chooses a key k ∈ K uniformly at random, and, indepen-
dently, a bit b ∈ {0, 1} uniformly. (These are not communicated to the
challenger.)

• The adversary chooses two messages m0,m1 ∈ M, with |m0| = |m1|
(equal length), and sends these to the challenger.

• The challenger computes c = Ek(mb), and sends it to the adversary.

• The adversary computes a bit b′ ∈ {0, 1} and claims that c is the encryption
of mb′ .

The adversary succeeds if b = b′. What is the probability of success?

Theorem 2 The cryptographic system is perfectly secret if and only if for every
m0,m1 ∈ M with |m0| = |m1|, and every method of computing b′, the adver-
sary’s probability of success is exactly 1

2
.

That is, the adversary can do no better than flipping a coin, even if he gets to
choose the plaintexts m0,m1.

Proof. First, suppose that the system is perfectly secret. The adversary picks
m0,m1. Let us suppose that his method is to answer b′ = 0 if the ciphertext c sent
by the challenger satisfies

c ∈ {c1, . . . , cr},

and b′ = 1 if
c ∈ {c′1, . . . , c′s},
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where
M = {c1, . . . , cr} ∪ {c′1, . . . , c′s}.

The adversary succeeds if b = 0 and Ek(m0) ∈ {c1, . . . , cr}, or if b = 1 and
Ek(m1) ∈ {c′1, . . . , c′s}. The resulting probability is

1

2
·

r∑
i=1

Prk∈K(Ek(m0) = ci) +
1

2
·

s∑
j=1

Prk∈K(Ek(m1) = c′j).

Since the system is perfectly secret, we can replace m0 in the first summand above
by m1, which makes the success probability

1

2
·

r∑
i=1

Prk∈K(Ek(m1) = ci) +
1

2
·

s∑
j=1

Prk∈K(Ek(m1) = c′j) =

1

2
· Prk∈K(Ek(m1) ∈ {c1, . . . , cr} ∪ {c′1, . . . , c′s}) =

1

2
· Prk∈K(Ek(m1) ∈M) =

1

2
· 1 =

1

2
.

For the converse direction, assume that the system is not perfectly secret. Then
there is some pair m0,m1 of plaintexts and some ciphertext c′ such that

Prk∈K(Ek(m0) = c′) 6= Prk∈K(Ek(m1) = c′).

Let’s assume without loss of generality that the left-hand side is strictly larger
than the right-hand side. We will show that the adversary has a guessing strategy
that succeeds with probability strictly greater than one-half. The adversary pro-
vides m0,m1 to the challenger, and uses the following guessing strategy: If c is a
ciphertext such that

Prk∈K(Ek(m0) = c) > Prk∈K(Ek(m1) = c),

then the adversary guesses that the plaintext is m0, otherwise the adversary guesses
m1. As above, the success probability is

1

2
·

r∑
i=1

Prk∈K(Ek(m0) = ci) +
1

2
·

s∑
j=1

Prk∈K(Ek(m1) = c′j),
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where {c1, . . . , cr} is the set of ciphertexts for which the adversary guesses m0,
and {c′1, . . . , c′s} those for which the adversary guesses m1. But our assumption
implies that this is strictly greater than

1

2
·

r∑
i=1

Prk∈K(Ek(m1) = ci) +
1

2
·

s∑
j=1

Prk∈K(Ek(m1) = c′j) =
1

2
,

thus the system does not satisfy our second alternative definition. This completes
the proof.

(In the proof we assumed that the adversary’s method was deterministic: that
is, for every possible ciphertext c ∈ M, the adversary computes a fixed answer
that depends only on c,m0,m1. But we can also allow the adversary to flip some
coins during the computation, and thus use a probabilistic method. In this case, the
probability in the altered definition is over all possible keys, the challenger’s coin
flip, and the adversary’s coin flip. This makes the proof a little more complicated,
but the result is the same.)

8 If you can’t have perfect secrecy, what can you
have?

The problem with using perfect secrecy as a definition of security is that it is much
too stringent: it requires our system to be secure against an infinitely powerful ad-
versary: We place no limits on the amount of work that the adversary has to do to
find messages m0 and m1 that break the system, nor on the work required to com-
pute the guess b′ from the challenge ciphertext c. We also require the adversary to
gain absolutely no advantage over just random guessing.

If the adversary has to perform 2100 operations to find m0 and m1 or to com-
pute b′, or if the probability of success is only 1

2
+ 2−100, then in practical terms it

is still impossible for the adversary to get any useful information from the cipher-
text. Thus our definition of security will restrict the adversary to performing only
feasible computations, and require that the advantage over a success probability
of 1

2
is more than negligible. We will flesh this out, and provide exact definitions

of ‘feasible’ and ‘negligible’ a bit later.
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