
CS381-Cryptography

Lecture 5: Block Ciphers

February 8, 2017

1 Overview

1.1 What is a Block Cipher?
Most (not all) modern symmetric encryption is built on block ciphers, which are
algorithms for encrypting fixed-length blocks of data.

Figure 1: Block cipher encryption of a single block of data

Formally, a block cipher is hardly different from the cryptosystems we have
already been studying: We have a key space K = {0, 1}`, a message spaceM =
{0, 1}n, and encryption and decryption functions E,D : K ×M →M. What is
different is that the block size n is close to the key size ` (contrast stream ciphers,

1

where the message size is typically much larger than the key size). The security
requirement for block ciphers is different as well:

If you choose a key k ∈ K, then the function

Ek : m 7→ Ek(m)

is a permutation of {0, 1}n. The idea is that if you select k at random, this should
be for all practical purposes indistinguishable from a randomly-selected permu-
tation of {0, 1}n. (A randomly-selected permutation is like using the substitution
cipher with a random permutation of the alphabet, although here the alphabet has
2n letters rather than 26.) We do not have enough time or space in the universe
to generate or specify a random permutation of {0, 1}n for, say, n = 128, which
is a typical value. The trick is to use a short key to generate a permutation that
‘looks’ random. Typically, we will use a single key to encrypt multiple blocks of
plaintext.
Example. Here is an example of a bad block cipher, our old friend the one-time
pad: We set K =M = {0, 1}128 and E(k,m) = k ⊕m. If we use a single key k
to encrypt two blocks m1 and m2, giving ciphertext blocks c1, c2, we will always
have

m1 ⊕m2 = c1 ⊕ c2.

The probability of such behavior for a random permutation of {0, 1}128 is astro-
nomically small, so we can easily distinguish the Ek of this cryptosystem from
randomly selected permutations. (Note that to observe this special behavior, we
had to encrypt two plaintexts, something we never do with stream ciphers of the
one-time pad.)

1.2 Block Ciphers in Wide Use
We will concentrate on two (or three, depending on how you count it) block ci-
phers in wide use. DES, the Data Encryption Standard, adopted as a govern-
ment standard for encryption of non-classified information, has key size 56 bits
and block size 64 bits. 3DES, which is built on DES, has key size 168 bits and
block size 64 bits. AES, the Advanced Enryption Standard, originally called the
Rijndael Cipher, was adopted in 2000 as the replacement for DES. It has 128-
bit blocks. It can be used with several different key sizes, but the smallest is
K = {0, 1}128.

2

2 Block Ciphers as Black Boxes
Here we discuss properties that are independent of the internal structure of the
block cipher. We will assume that we have an ‘ideal’ block cipher: in other words,
we will pretend that our key is a permutation of {0, 1}n selected uniformly at
random from all (2n)! such permutations.

2.1 Security Against Brute-force Attack
2.1.1 Attack with two known plaintexts

If Eve intercepts a block obtained by encrypting with a block cipher (for example,
a 16-byte AES block) she really can’t decipher it, even with exhaustive search, if
she knows nothing about the distribution of plaintext messages—we are no longer
thinking of these things as being normal English.

What we’ll show here is that if Eve knows just a few plaintext-ciphertext pairs,
then exhaustive search is effective.

First imagine the following experiment. Suppose you have r randomly-selected
permutations π1, . . . , πr of {1, . . . , N}. Suppose you know a value of π1, say
π1(i) = j. What is the probability that πk(i) = j for one of the other permu-
tations πk? We can obtain an upper bound on this probability by

Prob[
r∨

k=2

πk(i) = j] ≤
r∑

k=2

Prob[πk(i) = j]

=
r − 1

n
.

Suppose instead that we know two values of π1, say π1(i1) = j1, π1(i2) = j2.
What is the probability that one of the other permutations πk agrees at these two
values?

Prob[
r∨

k=2

(πk(i1) = j1) ∧ (πk(i2) = j2)] ≤
r∑

k=2

Prob[(πk(i1) = j1) ∧ (πk(i2) = j2)]

=
r − 1

n(n− 1)
.

What does this say about exhaustive-search attacks? For DES, if we know a
single plaintext-ciphertext pair of blocks we can encrypt the plaintext under all

3

possible keys until we find a block that matches the ciphertext. The probability
that this can happen with more than one key is no more than

(r − 1)

n
≈ 256

264
= 2−8 =

1

256
,

so this attack is likely to reveal the key. If we have two plaintext-ciphertext pairs,
and search for a key that encrypts both plaintexts correctly, then the probability
that more than one key does this is no more than

r

n(n− 1)
≈ 256

2128
= 2−72,

and for AES it is no more than

2128

2256
= 2−128.

So it is almost certain that there is a unique key that generates the pair of blocks.
This attack requires 2k+1 encryptions in the worst case, and 2k encryptions

on average. For 128-bit keys it is really impossible: we have only a negligible
probability of finding the key as a result of any search that we could carry out in
practice.

The 56-bit key for DES, on the other hand, is problematic. This weakness
was pointed out when the standard was first proposed in the 1970’s. The attack
was successfully carried out in 1997, first by distributed computation by many
computers working over the Internet, and then by specialized hardware that could
test many keys in parallel. (The hardware was able to perform something like 80
billion encryptions per second!)

2.1.2 Multiple Encryption for Increased Key Size: Meet-in-the-middle at-
tack

One might try to remedy the weak key length in DES by encrypting twice, using
two different keys:

E ′(k1,k2)(m) = Ek2(Ek1(m)).

The hope is that in doing so we will have effectively doubled the key length,
and thus squared the size of the key space. For DES this means a 112-bit key,
which should be secure against brute-force attack.

4

You might well wonder at this point whether composing two short keys in this
way is not equivalent to using a single short key, i.e., is there a key k3 such that

E(k3,m) = E(k1, E(k2,m))

for all blocks m? It is known that this does not occur in DES.
However, this double-encryption approach is vulnerable to a ‘meet-in-the-

middle attack’, which renders it not much more secure than using a single key,
provided one has a great deal of memory available. The idea is simple—for con-
creteness, we will assume a key size of k = 56 bits and a block size of m = 64
bits, which are the DES parameters.

Suppose we know two plaintext-ciphertext pairs (m1, c1), (m2, c2), where

c1 = E(k2, E(k1,m1)), c2 = E(k2, E(k1,m2)).

The attack begins by encrypting the pair of blocks (m1,m2) under all 256 keys,
storing the resulting ciphertext pairs in a table, and sorting the table. Sorting a list
of size N requires time proportional to N · log2N, so in this case we require
56× 256 steps for the sorting in addition to the 2× 256 encryptions of blocks. For
the second step, we decrypt (c1, c2) under all 256 keys and search for the resulting
pair in the table. This requires 2 · 256 decryptions of blocks, plus 256 searches of
a sorted table, each of which uses about 56 probes. We know that there is at least
one pair of keys (k1, k2) that results in a match. How likely is it that we will find
a second match?

Our table contains no more than 256 pairs of blocks. The probability that a
randomly generated pair of blocks occurs in the table is 256/2128 = 2−72. Thus
the probability that we will find more than one match in the decryption phase is
no more than

256/272 = 2−16 = 1/65536.

It is thus highly likely that the two known-plaintext pairs reveal the pair of keys
that was used. In the unlikely event that we find more than one pair of keys that
works, a third known-plaintext pair is virtually certain to resolve the issue.

The point of this attack is that it is only a few orders of magnitude more costly
in terms of time that using a single 56-bit key, and thus the encryption method is
far weaker than what one expects with a 112-bit key. (Although it does require a
massive table.)

Triple encryption with DES (3DES) is believed to be secure, and was adopted
as a standard in the late 1990’s.

5

2.2 Modes of Operation
You have a block cipher that encrypts a single block of data. How do you use it to
encrypt multiple blocks?

2.2.1 The obvious (bad) answer: ECB mode

ECB stands for ‘electronic code book’. It is the obvious thing, just encrypt each
block independently. You’ve already seen this with the monoalphabetic substitu-
tion cipher. The key is a permutation of the 26 letters, a block is a single letter,
and encryption is applied block by block. Much of the weakness follows from the
fact that repeated blocks of plaintext show up as repeated blocks of ciphertext.

Figure 2: ECB encryption of N blocks of data

The same weakness is present in ECB with larger block sizes. If two blocks
of ciphertext are identical, then the corresponding blocks of plaintext are also
identical. Thus the ciphertext leaks information about the plaintext at the cost of
very little computational effort.

You might think that in spite of this, a large block size would make repeated
blocks in plaintext very rare, and that in any case, an occasional repeated block
in ciphertext would not give away very much useful information. The following
demonstration shows just how wrong that can be: The image on the left of Figure
3 was saved in a bit-mapped file format, so that apart from the short file header,
every byte of the file is associated with one image pixel, with three bytes for each
pixel. The file contents were encrypted by AES in ECB mode, and the origi-
nal header restored so that the encrypted file could be displayed as a bit-mapped

6

image.

Figure 3: ECB encryption of a bit-mapped image. Large regions of the image with
a single color lead to a large number of repeated blocks.

Moral: Don’t use ECB mode.

2.2.2 CBC Mode

CBC stands for cipherblock chaining. The ciphertext block generated in one step
is mixed with the plaintext block of the next step prior to encryption. This leaves
the problem of what to mix the first plaintext block with, and for this reason a
special block called an initialization vector (IV) must be supplied. So we have
(see Figure 4)

c1 = Ek(IV ⊕m1)

ci+1 = Ek(ci ⊕mi+1),

for i ≥ 1.
Figure 5 shows the image experiment, this time conducted in CBC mode.
To decrypt, Bob computes

m1 = IV ⊕Dk(c1)

mi+1 = ci ⊕DK(ci+1),

Bob must have IV available to obtain the first plaintext block, so the IV must
be sent unencrypted. One consequence of this is that the ciphertext is one block
longer than the plaintext message.

You might wonder why we bother with the IV at all, and not simply send
c1 = EK(m1) as the first ciphertext block. The reason is that if we have several

7

Figure 4: CBC encryption of multiple blocks of data

Figure 5: CBC encryption of a bit-mapped image. The chaining process alters
the input to each encryption block, and the resulting ciphertext looks completely
random.

long messages encrypted with the same key, then a repetition of the first blocks in
two of the messages will show up as a repetition of the first blocks in the received
ciphertexts.

For the same reason, one should not use the same IV for two different mes-
sages. (For a related, but somewhat subtler reason, it should not be possible to
predict the IV of the next message.) A sound practice is to choose a random IV
for each message.

CBC has a nice error-recovery feature: Although changing one bit of a plain-
text block completely changes all subsequent ciphertext blocks, a change of one
bit of a ciphertext block because of a transmission error will only alter one bit in
the next decrypted plaintext block, and have no effect on the subsequent ones.

8

Figure 6: Encryption of multiple blocks in CTR mode. Just as with the one-time
pad, the plaintext is XORed with a keystream. In this case the keystream is gener-
ated using the block cipher applied to successive values of a counter block.

2.2.3 CTR Mode

CTR stands for counter. An initial value ctr is chosen for a counter block. If we
have N plaintext blocks to send, we encrypt the blocks ctr + i for i = 1, . . . , N,
and XOR the results with the subsequent blocks of plaintext. (Figure 6). Note that
we do not use the block cipher to directly encrypt the plaintext blocks; instead this
is a stream cipher in which we use the block cipher to generate the keystream. As
is the case with stream ciphers, decryption is the same as encryption, and you can
not use the same keystream twice. For this reason, counter values should never
repeat.

If the encryption function were truly random, then this method would be as
secure as the one-time pad, provided that we never repeat a value of the counter
fed to Ek. The probability that we repeat a value of the counter with two messages
(or any small number of messages) is quite small, unless the messages are huge.
For example, suppose we have two messages that are both one million blocks long,
and that we use a block cipher with a 128-bit block size. We randomly initialize
ctr for each of these messages. We will get a repeated value of the counter only
if the initial values of ctr for the two messages are within two million of one
another. The probability of this happening is no more than

2 · 106

2128
< 3 · 10−31.

9

Observe that the large block size is crucial here.
An advantage of CTR mode is that it is very fast and can be executed in paral-

lel.

2.3 Padding oracle attack on CBC
ECB and CBC cannot be used directly if the number of bits in the plaintext mes-
sage is not an integer multiple of the block size. If you need to encrypt such a
message, you must first add padding bits to adjust the block size before encrypt-
ing. After decryption, the padding must be removed to obtain the original plain-
text. This means that the padding must be identified unambiguously: there should
be no question about which bytes belong to the pad and which to the original
plaintext.

There is a very simple and widely used padding standard called PKCS7. Let
` be the length, in bytes, of the message, and let L be the smallest multiple of the
block size (in bytes) strictly larger than `. For instance, if ` = 55 and the block
size is 8 bytes, then L = 56, but if the block size is 16 bytes, then L = 64. The
pad consists of L− ` bytes, each of which has the value L− `. For example, if the
block size is 8 bytes, then the padded version of Boston College is

Boston College\x02\x02

because the original text is 14 bytes long, so we pad with two bytes, each having
value 2. Note that even messages whose length is a multiple of the block size get
padded: The padded version of Chestnut Hill MA with 8-byte blocks is

Chestnut Hill MA\x08\x08\x08\x08\x08\x08\x08\x08

Here the padding takes up an entire block.
A server receiving encrypted messages removes the padding after decryption.

What does it do if the padding is incorrect? It might indicate this in an error
message. The server thus acts as a padding oracle. If you possess a ciphertext,
then by repeatedly modifying it and submitting it to the oracle, it is possible to
decrypt it completely! The number of queries to the oracle is relatively modest
(about 256 times the number of bytes in the message).

Here is how the attack works. Let us say we have a three-block message that
is the DES encryption of a two-block plaintext (the first block of the message is
the IV). So we have

IV ||c1||c2,

10

and each of these blocks is 8-bits long. Presumably this was padded correctly, but
we can verify this by submitting it to the oracle. Let m1||m2 denote the plaintext,
which we do not know. The idea is that by tweaking the first ciphertext block c1,
we induce changes to the second plaintext block m2. More precisely, changing c1
can always be accomplished by XORing the byte with some other block b, and the
effect on the plaintext block m2 will be to change it to m2 ⊕ b.

Now let’s change the highest-order byte of c1, giving c′1. When decrypted,
this will change the highest-order byte of m2. What happens when we submit
IV ||c′1||c2 to the padding oracle?

If the padding oracle returns an error, then the high-order byte was part of
the padding, which means that the pad value is 8, repeated in all 8 bytes of the
plaintext. If the padding oracle does not return an error, then the length of the pad
is less than 8. We restore the changed byte of c1 and change the next-highest byte,
and repeat the experiment. Eventually we will locate the highest-order byte of m2

that is part of the padding. This tells us both the length of the padding and the
value of the byte.

Let’s suppose, by way of example, that the padding has length 3, so that the
successive bytes of m2 are

? ? ? ? ? 03 03 03

We first XOR the ciphertext block c1 with 00 00 00 00 00 07 07 07. Since 03 ⊕
07 = 04, when we submit the result for decryption, the last block will have the
form

? ? ? ? ? 04 04 04

The high-order five bytes are ones from the original plaintext. If the padding ora-
cle does not report an error, then we know that the rightmost unknown byte is 04,
and thatm2 is ? ? ? ? 04 03 03 03. If, as is more likely, the padding
oracle does report an error, then we XOR c1 with, in turn, 00 00 00 00 xx 07 07 07,
where xx takes on all 255 values from 01 to ff. Exactly one of these values will
cause the last block of decrypted plaintext to have the form 00 00 00 00 04 04 04 04
and not produce an error message from the padding oracle. Let us suppose that
xx = 3f is this value. Then the rightmost unknown byte of m2 is 3f⊕04 = 3b.
Thus we have recovered one byte of the original plaintext. We now know m2 has
the form

? ? ? ? 3b 04 04 04

11

We can continue in this manner, decrypting the remaining three bytes of m2.
We now proceed to decrypt m1. To do this, we need to tweak the IV to induce

corresponding changes inm1. This time, m1 is probably not correctly padded (un-
less its least significant byte happens to be 1). We thus XOR the least significant
byte of the IV with all the values from 01 to ff and see which gives us correct
padding. A small problem results from the fact that there might be more than
one answer to this question. If our XORing forces the lowest-order byte of the
plaintext to be 01, the padding will be correct. But let’s imagine that the next
higher byte of m1 is 02, in which case there will now be two different values that
give correct padding. However, once we find a modification that causes m1 to be
correctly padded, we can use the method above to find the length of the pad, and
thus figure out which of the possible solutions changes the lowest byte of m1 to
01. This will tell us the low-order byte of m1. We now decrypt the rest of m1

exactly as we did above with m2.
This attack was discovered by Serge Vaudenay in 2002. It was subsequently

found that there some real systems could be used in this way as padding oracles,
and were vulnerable to the attack.

3 Internal Structure of Block Ciphers (especially AES)
Good block cipher design is an extremely difficult task. Both AES and triple-
DES have been subject to intense scrutiny for many years, and no major security
weakness has been discovered. If you need a block cipher, use one of these—don’t
try to design your own.

Still, it’s worth talking about some of the design principles behind these block
ciphers. Block ciphers typically have a round structure: In each round, the key,
or a portion of the key, is used to derive a round key. Each round further alters
the plaintext. Each individual round has a simple, easy-to-understand structure,
and permits a rapid implementation. But the accumulated effect of all the rounds
is supposed to make it effectively impossible to recover information about the
plaintext block from the ciphertext block.

3.1 Substitution-Permutation Networks
What’s inside a round? One general model (essentially followed in AES, but not
in DES), is called a substitution-permutation network. This is illustrated in Figure
8. The input block of the round is first XORed with the round key. The resulting

12

Figure 7: Round structure of a block cipher.

13

Figure 8: One round of a substitution-permutation network. The S-boxes are
lookup tables that provide a permutation of {0, 1}8. The mixing permutation per-
mutes the bits of a 128-bit block.

block (16 bytes in the example) is partitioned into 1-byte sub-blocks. The byte in
each sub-block is replaced by a different byte, by means of a lookup table called
an S-box. The bits of the outputs of the S-box are then permuted and the resulting
output becomes the input to the next round. We call these three phases of a round
AddKey, Sub, and Mix.

If we did not have the S-boxes, then regardless of the number of rounds, the
ciphertext C would be π(P) ⊕ K ′, where K ′ is a block derived from the key,
and π(P) is some known permutation of the bits of P. This means that if we
encrypted two different plaintext blocks P1, P2 to produce ciphertexts C1, C2, we
would have C1 ⊕ C2 = π(P1)⊕ π(P2), revealing information about the plaintext
with no knowledge of the key.

For the same reason, the S-boxes must be a nonlinear functions of the input
bytes.

The S-boxes are designed so that changing any bit of the input byte changes at
least two bits of the output byte. The mixing permutation is designed so that the

14

output bits of a single S-box are sent to different sub-blocks. The effect of these
two operations is the following: If we change one bit of plaintext, it will result in at
least two bits difference in the output of one S-box in the first round. The mixing
permutation will send these two bits to different S-boxes in the subsequent round,
resulting in 4 bits of difference at the end of round 2, then 8 bits of difference at
the end of round 3, etc. Of course, it cannot keep doubling like that, and there will
be some collisions along the way, where output bits of two different subblocks
are sent to the same subblock. But the net effect of all of this should be that
changing one bit of a plaintext block will on average change about half the bits
of the resulting ciphertext block. This is called the avalanche effect. As a result,
local alterations to a block are diffused throughout the block. This also shows
that the cipher requires a relatively large number of rounds to achieve this kind of
thorough mixing.

You can see from even this brief description that the design of a round requires
some intricate engineering, and is not a question of choosing something really
confusing-looking at random.

AES is a variant of the substitution-permutation network idea. In AES, all
the S-boxes are the same. The mixing permutation step in each round is divided
into two phases: In the first phase (ShiftRows), the 16-byte state is represented
as a 4 × 4 array of bytes, and each row of this matrix is cyclically shifted. In the
second phase (MixColumns), the state is represented as a 32 × 4 matrix of bits,
which is multiplied on the left by a particular 32× 32 matrix of bits, with addition
being done modulo 2. This is not precisely a permutation of the bits, so in this
respect, the description differs from that of the generic substitution-permutation
network. There are ten such rounds, with the last round being slightly different
from the earlier ones.

15

Figure 9: One round of AES-128. All the S-boxes are the same, and the mixing
permutation is replaced by a permutation of the bits followed by a linear trans-
formation.

16

