
Crypto	in	practice:		What	happens	when	you	connect	to	a	
secure	web	server	
	
	
Normal	communication	between	a	web	browser	and	a	web	server	is	carried	out	through	an	
exchange	of	messages	in	HTTP	(Hypertext	Transfer	Protocol).		These	messages	are	translated	
into	and	from	the	network	packets	used	by	the	lower-level	network	protocols.	
	
The	Secure	Sockets	Layer	(SSL),	later	renamed	Transport	Layer	Security	(TLS)	is	a	protocol	that	
sits	between	application	layer	protocols	like	HTTP	and	the	lower	levels.		The	first	TLS	messages	
exchanged	create	the	secure	channel	between	client	and	server,	and	the	subsequent	messages	
are	encrypted	versions	of	the	application	layer	messages.	
	
This	demo	presents	a	very	detailed	example	of	how	this	is	carried	out,	using	TLS	version	1.2,	the	
latest	descendant	of	SSL.		In	it,	you	will	see	how	all	the	techniques	we	have	studied	in	class:	
pseudo-random	number	generation,	public	key	encryption,	symmetric	encryption,	hash	
functions,	message	authentication	codes,	and	digital	signatures,	are	actually	deployed	in	
practice.	
	
The	textbook	provides	a	very	brief	account	of	how	an	earlier	TLS	version	works.		The	inspiration	
for	this	demo	is	a	blog	post	by	Doug	Moser,	'The	first	few	milliseconds	of	an	https	connection'	
http://www.moserware.com/2009/06/first-few-milliseconds-of-https.html.		Moser	carries	out	
essentially	the	same	procedure	shown	here,	with	an	older	version	of	TLS	and	a	different	cipher	
for	symmetric	encryption.	
	
	
How	the	demo	was	created.		
	
I	set	an	environment	variable	so	that	the	Chrome	browser	would	log	the	secret	key	material	it	
generates.		(For	obvious	reasons,	this	is	something	you	DON'T	want	to	do	routinely.)		On	a	
Macintosh	computer,	you	set	this	variable	from	the	command	line	in	the	Terminal	utility	by	
typing:	
	
	
launchctl setenv SSLKEYLOGFILE full-path 
	
where	full-path	is	the	full	pathname	of	a	text	file	that	will	be	used	to	log	the	secrets.	
	
I	launched	Wireshark,	a	network	analysis	tool,	which	captured	all	the	packets	sent	from	and	
received	by	the	Wi-Fi	connection	on	my	computer.	Then	I	started	the	Chrome	browser,	went	to	
target.com,	and	started	the	process	(never	completed)	of	buying	some	speakers.		When	I	went	to	
check	out,	I	finally	reached	the	secure	website	https://www-secure.target.com.		(Interestingly,	
Target	does	not	encrypt	the	communication	until	it	is	time	to	pay,	so	it	does	not	treat	WHAT	I	am	
buying	as	confidential	information.)	



	
Once	I	reached	the	secure	website,	I	shut	down	the	browser,	stopped	the	network	capture	on	
Wireshark	and	saved	the	result.			
	
When	you	open	the	saved	file	in	Wireshark,	you	can	enter	'SSL'	as	a	filter	and	click	Apply;	this	
shows	you	all	the	TLS	messages.	It	is	also	possible	to	filter	the	messages	so	that	you	just	see	the	
ones	associated	with	one	conversation.		This	is	what	is	shown	in	the	screenshots	below.		
Wireshark	presents	two	different	views	of	each	message---one	in	raw	hex,	and	another	that	
'understands'	the	protocol,	and	parses	the	message	into	its	various	meaningful	components.	
	
Let's	go	through	these	messages	one	by	one:	
	
Client	Hello.	The	Client	Hello	message	(Figure	1)	sent	from	my	browser	to	the	server	includes,	
among	other	things,	a	4-byte	time	stamp,	a	28-byte	randomly-generated	value	and	a	list	of		
twenty	'cipher	suites',	collections	of	cryptographic	algorithms	that	the	browser	supports.		For	
instance,		
	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	
	
means	Elliptic	Curve	Diffie	Hellman	for	establishing	the	symmetric	key,	Elliptic	Curve	Digital	
Signature	Algorithm	for	signatures,	AES	with	128-bit	keys	in	Galois	Counter	Mode	(that's	a	new	
one	for	me!)	for	symmetric	encryption,	and	SHA256	for	hashing.		We	haven't	yet	established	the	
secure	channel,	so	the	information	in	this	message	is	sent	in	the	clear.		You	can	see	from	the	
ASCII	translation	of	the	hex	dump	that	we	are	at	www-secure.target.com.			
	
The	28-byte	random	value	will	be	taken	together	with	the	4-byte	time	stamp	that	precedes	it	as	
part	of	the	key	generation	process,	which	we'll	describe	later.		(I	do	not	know	why	the	time	
stamp	says	the	date	is	March	5,	2022.	I	did	this	in	November	2014.)	



	
	

Figure	1:	The	Client	Hello	message,	showing	some	of	the	supported	cipher	suites,	the	4-byte	time	stamp,	and	the	28	
bytes	of	random	data	

	
	

	

	
Server	Hello.	The	Server	Hello	message	contains	a	4-byte	time	stamp	(this	time	with	the	right	
date),	an	independently-generated	random	28-byte	value	and	the	selected	cipher	suite,	which	is		
RSA	for	public-key	encryption,	AES	-	256	in	CBC	mode	for	symmetric	encryption,	and	SHA-1		for	
hashing.	
	



	
	

Figure	2:	Server	Hello	message,	showing	the	time	stamp,	random	data,	and	the	chosen	cipher	suite.	

	
	
Certificates.	The	next	message	consists	of	certificates	sent	from	the	server.		The	three	
certificates	in	the	chain	match	the	ones	reported	to	us	in	the	friendlier	view	from	the	browser.	
(Figure	4.)	
	

	
Figure	3:	The	list	of	certificates	sent	by	the	server,	as	displayed	in	Wireshark	

	
	



	
	

Figure	4:	A	same	list	of	certificates,	viewed	in	the	browser	

The	purpose	of	the	certificate	is	to	show	that	the	public	key	information	it	contains	really	does	
belong	to	Target,	and	thus	prevent	a	Man-in-the-Middle	attack	in	which	we	send	confidential	
information	to	an	attacker	pretending	to	be	Target.	This	is	accomplished	by	having	the	
certificate	bear	the	digital	signature	of	a	trusted	authority.	Let's	do	some	cryptographic	
calculations	and	independently	verify	the	legitimacy	of	the	certificate.		The	site	certificate	(the	
one	at	the	bottom	in	the	browser	view,	the	first	one	in	the	Wireshark	view)	contains	the	
signature.		It's	labeled	as	'encrypted'	in	Wireshark's	view,	and	as	'Signature'	in	the	browser's	
view,	which	is	what	we	show	in	Figure	5.	
	



	
	

Figure	5:	The	signature	on	the	site	certificate	

	
The	public	key	for	verifying	this	signature	is	on	the	next	certificate	in	the	chain,	the	one	labeled	
'Comodo	Extended	Validation	Secure	Server	CA2'.		The	key	consists	of	an	RSA	modulus	and	
exponent,	which	here,	as	is	customary,		is	65537	=	216	+	1.	To		



	
	

Figure	6:	The	public	verification	key	of	the	signer	of	the	site	certificate.		This	key	is	found	on	the	second	certificate	in	the	
chain.	

	
generate	the	Python	code	shown	below,	I	just	copied	the	hex	signature	and	modulus	from	the	
certificates,	removed	the	blanks,	converted	to	long	integers,	and	called	Python's	built-in	pow	
function	for	modular	exponentiation.		You	wouldn't	notice	anything	special	about	the	result	if	
you		printed	it	in	decimal,	but	when	we	look	at	it	in	hex,	we	see	that	it	contains	about	a	gazillion	
(ok,	about	1700)	1	bits	with	a	few	zeros	tacked	on	in	front,	followed	by	the	information	the	



signature	was	applied	to.		This	result	could	not	possibly	arise	by	chance,	so	we	must	have	done	
something	right!		
	
	

	
	

Figure	7:	Verification	of	the	signature	on	the	site	certificate.	The	signature	is	applied	to	an	SHA1	hash	of	the	certificate,	
with	special	code	prepended	to	say	that	this	is	an	SHA-1	hash,	and	then	padded	out	with	a	lot	of	1's.	

Evidently,	the	payload	to	be	signed	is	padded	out	with	all	those	1s	before	the	RSA	algorithm	is	
executed.	But	we	have	to	dig	down	a	bit	to	figure	out	how	to	read	this	and	complete	our	
signature	verification.		The	signature	algorithm	is	described	in	detail	in	the	Internet	standards	
document	defining	the	RSA	public-key	signature	standard	(for	the	curious,	it's	RFC3447,	Section	
9.2).		The	steps	for	signing	are:	

• Hash	the	message	to	be	signed,	using	the	hash	algorithm	SHA1	
• prepend	the	bytes	30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14	



• prepend		a	zero	byte	
• prepend	218	bytes	FF	(1672	1s	in	binary)	
• prepend	a	one	byte	(01	in	hex,	00000001	in	binary)	
• prepend	a	zero	byte	(00	hex,	00000000	binary)	
• raise	this	to	the	power	e	mod	N,	where	e	is	the	public	RSA	exponent	and	N	the	modulus	of	

the	signer's	public	key	
• 	

So	now	we	know	that	the	hash	of	the	signed	data	should	match	the	last	160	bits	(40	hex	digits)	of	
the	result	of	our	calculation,	namely	
	
F4	18	D0	8F	B2	D7	EA	2B	A6	8F	96	15	7A	40	5E	D6	87	04	A5	54	
	
But	exactly	which	bytes	of	the	certificate	is	the	hash	applied	to?		Obviously,	it	can't	be	the	entire	
certificate,	as	this	includes	the	signature	itself.		Fortunately,	Wireshark	points	this	out	to	us	
under	'signed	certificate'	(Figure	8).	This	contains	the	serial	number,	the	expiration	date,	the	
name	and	address	of	the	Target	company,	and	the	public	key,	as	it	must.	
	
To	finish	the	signature	verification,	I	exported	the	raw	bytes	of	the	signed	certificate	and	used	
the	built-in	hash	library	of	Python	to	compute	the	SHA-1	hash.		The	result	matches	the	160	bits	
we	extracted	earlier,	so	the	signature	is	accepted.	
	

	
	
Figure	8:	The	portion	of	the	certificate	that	is	hashed	before	the	signature	is	applied.		The	SHA-1	hash	of	this	sequence	of	
bytes	is	equal	to	the	160-bits	string	we	computed	earlier,	so	the	signature	is	verified.	



	
That's	enough	signature-verifying	for	this	demo,	but	our	browser	is	not	done	verifying.		Why	
should	we	accept	the	signature	of	the	certifying	authority?		Because	its	public	key	(on	the	second	
certificate	in	the	chain)	is	signed	with	the	public	key	on	the	last	certificate	(the	root	certificate).		
The	root	certificate,	as	it	turns	out,	is	`self-signed':		You	verify	it	with	the	public	key	on	the	same	
certificate!			
	
So	why	should	we	trust	the	root	certificate?	The	root	certificate	exactly	matches	one	of	the	
certificates	stored	in	my	Mac's	'keychain'.		This	is	a	small	list	of	certifying	authorities	that	are	
considered	to	be	trustworthy.	Should	we	believe	that?		It	seems	to	be	an	axiom	in	computer	
security	that	ultimately	you	have	to	trust	somebody.	
	
	
Finishing	the	Handshake.	The	next	protocol	message,	sent	from	the	client	to	the	server	has	
three	parts,	called	Client	Key	Exchange,	Change	Cipher	Spec,	and	Encrypted	Handshake.		The	
client	generates	a	48-bit	string	called	the	premaster	secret.	This	will	be	used	by	both	the	client	
and	server	to	generate	the	symmetric	keys	used	for	the	secured	portion	of	the	session.	The	
Client	Key	Exchange	sends	the	server	the	RSA-encrypted	premaster	secret,	a	256-byte	(2048-
bit)	value.		This	is	the	only	place	in	the	process	where	public-key	encryption	is	used.	
	
	

	

	
Figure	9:	Client	Key	exchange	message,	showing	RSA-encrypted	premaster	secret.	

	



What	is	the	actual	premaster	secret?		Of	course	it	cannot	be	sent	directly	to	the	server;	that's	
why	it's	encrypted.	It	does	not	show	up	in	these	views	in	Wireshark,	and	in	fact	is	should	not	be	
stored.	But	Chrome	allows	you	to	take	the	potentially	dangerous	step	(presumably	for	
debugging)	of	logging	the	secret	key	material,	so	this	where	we	use	the	key	log	file.			During	the	
session	I	monitored,	a	lot	of	different	secure	connections	were	made,	so	the	key	log	file	contains	
more	than	100	entries.		But	you	can	use	a	tool	like	grep	to	search	for	an	entry	using	the	first	few	
hex	digits	of	the	encrypted	secret.		This	turns	up	the	following	entry:	
	

	
The	first	field	gives	just	the	first	8	bytes	of	the	pre-master	secret.		The	second	is	the	premaster	
secret	itself,	a	48-byte	(96	hex	digits)	integer	generated	using	a	cryptographically	secure	random	
number	generator.			
	
It	would	be	nice	to	demonstrate	the	RSA	encryption	transforming	the	premaster	secret	into	the	
encrypted	version.		We	can	get	the	public	encryption	key	from	the	server's	certificate,	but	
remember	that	RSA	plaintexts	are	always	padded	with	random	data	prior	to	encryption,	and	we	
cannot	recover	these	random	bits.		Of	course	the	server,	which	has	the	RSA	private	key,	can	
decrypt	the	message,	strip	away	the	padding,	and	obtain	the	premaster	secret.	(In	the	blog	post	
cited	at	the	beginning	of	these	notes,	the	blogger	worked	with	a	debug	build	of	the	Firefox	
browser:		he	was	able	to	insert	debug	statements	and	capture	the	random	padding	data,	and	
thus	independently	reproduce	the	RSA	encryption	of	the	premaster	secret.)	
	
The	premaster	secret	is	used	to	compute	something	called	the	master	secret,	a	48-byte	block	
from	which	the	symmetric	keys	will	be	derived.	
	
The	Change	Cipher	Spec	message	informs	the	server	that	'everything	I	send	you	from	now	on	
will	be	encrypted'.	
	
Finally,	the	client	hashes	all	of	the	handshake	messages	that	have	been	exchanged	up	to	this	
point,	and	'encrypts'	this.		It	is	not	actual	encryption	per	se,	but	rather	the	result	of	applying	the	
pseudo-random	function	(see	below)	to	a	seed	value	derived	from	the	master	secret	and	the	
hash	of	the	handshake	messages.		The	result	is	the	Encrypted	Handshake	Message.	The	server	
should	be	able	to	repeat	this	computation	by	(a)	decrypting	the	encrypted	premaster	secret;	(b)	
using	this	to	generate	the	master	secret;	(c)	repeating	the	computation	of		the	encrypted	
handshake	message.		This	serves	to	authenticate	the	data	sent	from	the	client	up	to	this	point.		
	
The	next	message	from	the	server	also	has	3	parts,	New	Session	Ticket,	Change	Cipher	Spec,	
and	Encrypted	Handshake	Message.		The	first	provides	a	means	for	the	client	to	start	a	new	
session	without	a	full	handshake	and	key	exchange,	by	presenting	the	ticket	to	the	server.		We	
will	ignore	this---not	every	TLS	server	implements	this	feature.		Change	Cipher	Spec	again	tells	

RSA 1942f553cde7fda1 
03037baa39916a8d8a15eff048ecf32c9b3b828bc288bea2383a2531328c4172428ebf1ddf1252a0
2bfb51b1ea728aa7 

Figure	10:	An	entry	from	the	keylog		file,	showing	the	start	of	the	RSA-encrypted	premaster	secret,	and	
the	premaster	secret	itself.	



the	client	that	all	subsequent	messages	will	be	encrypted,	and	the	Encrypted	Handshake	
Message	uses	the	master	secret	and	a	hash	of	all	the	preceding	handshake	messages	to	derive	a	
random	string.			This	is	different	from	the	Encrypted	Handshake	Message	sent	by	the	client,	
because	the	hash	includes	one	additional	handshake	message.	Once	again,	the	client	can	verify	
that	this	has	been	done	correctly.		The	authenticated,	secure	connection	has	now	been	
established.		The	handshake	is	over.	
	
Generating	the	keys,	and	encrypting	application	data	
	
The	next	message	we	see	from	Wireshark	is	labeled	Application	Data,	and	it	contains		encrypted	
application	data	sent	from	the	client	to	the	server	(Figure	11).		By	pointing	Wireshark	to	the	
keylog	file,	we	can	see	its	decrypted	contents	(Figure	12),	an	HTTP	message	beginning	with		
	
GET /checkout_process?catalogId=10051&langId=-1.... 
	

	

	

	

Figure	11:	The	first	message	from	client	to	server	that	is	encrypted	with	AES---ciphertext	view.	



	

	
	

Figure	12:	..and	plaintext	view	

	
Let's	look	in	detail	at	the	steps	the	server	at	Target	takes	to	decrypt	the	encrypted	application	
data.		
	
We	first	have	to	know	how	the	symmetric	encryption	key	is	generated	from	the	premaster	
secret.		(The	definitive	source	for	this	is	the	Internet	Standards	document	RFC	5246	describing	
the	TLS	1.2	protocol.)	At	the	heart	of	this	process	is	the	pseudo-random	function,	which	is	
obtained	by	iterating	a	hash-based	message	authentication	code	(HMAC)		based	on	the	SHA256	
hash	function.		The	use	of	SHA256	is	an	innovation	in	TLS	1.2---earlier	versions	used	a	
combination	of	MD5	and	SHA-1.	The	Python	code	in	Figure	13	is	an	implementation	of	the	
pseudo-random	function.		The	HMAC	produces	data	in	32-byte	blocks.		By	iterating	the	process	
enough	times,	you	can	get	as	many	pseudo-random	bits	as	you	want.		You	should	be	aware	that	
the	first	three	arguments	to	PRF	are	sequences	of	bytes,	treated	as	strings.		Thus	the	addition	
operator	that	appears	in	the	code	below	is	concatenation	of	these	strings,	and	not	addition	of	
numbers.	
	
	



	
	
The	pseudorandom	function	is	used	together	with	the	48-byte	premaster	secret	and	the	random	
data	exchanged	in	the	hello	messages	to	generate	the	master	secret.		This	is	another	48-byte	
string.		The	client_random	and	server_random	arguments	in	the	code	below	are	32	bytes	long:	
they	consist	of	the	4-byte	time	stamp	in	each	Hello	message	concatenated	with	the	28	random	
bytes.			
	
The	master	secret	is	in	turn	combined	with	the	32-byte	random	strings	from	the	Hello	messages	
using	the	pseudo-random	function	to	produce	the	keyblock.	The	size	and	structure	of	the	key	
block	depend	on	the	cipher	suite	used.		In	our	example,	we	are	encrypting	with	AES	256	in	CBC	
mode	and	using	the	SHA-1	hash	function	for	message	authentication.		The	key	block	in	this	case	
consists	of	four	keys:		A	20-byte	key	used	by	the	client	to	compute	SHA-1-based	HMAC	
authentication	tags,	followed	by	a	20-byte	key	used	by	the	server	for	the	same	purpose,	then	a	
32-byte	(256-bit)	AES	key	used	by	the	client	for	encrypting	data	(and	the	server	for	decrypting),	
followed	by	another	32-bit	AES	key	used	by	the	server	for	encrypting	and	the	client	for	
decrypting.		(Note	that	in	contrast	to	the	setup	we	described	at	the	start	of	the	course,	each	party	
uses	one	symmetric	key	for	encrypting	and	another	for	decrypting.)	The	code	for	computing	the	
keyblock	is	shown	in	Figure	15.		In	our	example,	it	is	the	third	component	of	the	keyblock	that	is	
used	to	encrypt	data	from	the	client	to	the	server.	
	
For	what	it's	worth,	the	master	secret	is		
	
a7bb34756fd93a981a9e60469da3848cf409c0c9a65983bf8de61f5c3d2f4170a76fd77415a80bff
20cf37eac6053d55	
	
and	the	client	write	key	is	
	
4d04afed676a500ca0f5088a7e887deb53fc69e54b88e5500dda732beda6c2fd	
	
This	consists	of	64	hex	digits,	thus	32	bytes	or	256	bits.			
	
Finally,	we		set	this	key	on	the	encrypted	application	data	seen	in	Figure	11,	using	the	
implementation	of	AES	in	the	pycrypto	package.		The	message	is	3920	bytes	long.		Since	we	are	
in	CBC	mode,	the	first	16	bytes	is	the	initialization	vector,	and	the	remaining	3904	bytes	consist	
of	ciphertext	for	us	to	decrypt.		The	decrypted	version,	also	3904	bytes,	begins	with	the	HTTP	
message	shown	above	in	Figure	12.		The	last	few	bytes	of	the	decrypted	message	are	shown	in	
Figure	16	(Python	displays	the	result	in	ASCII,	with	non-printing	characters	are	rendered	in	hex	
preceded	by	`\x'.)	
	
 
These	final	bytes	consist	of	the	byte	value	10	(the	ASCII	encoding	of	the	newline	character	\n)	
repeated	11	times.		This	is	padding	that	was	added	to	the	plaintext	to	make	it	consist	of	a	whole	
number	of	16-byte	blocks.		The	twenty	bytes	preceding	this,	which	are	mostly	nonprintable	
characters,	constitute	the	MAC	tag.		The	actual	plaintext	HTTP	message	ends	with	the	characters	
pkyvprod1\r\n\r\n	.		So	the	true	plaintext	is	3904-20-11=3873	bytes	long:		This	is	what	is	



displayed	in	Figure	12.		(We	will	not	reproduce	the	other	step	taken	by	the	server,	which	is	to	
verify	the	20-byte	MAC	tag.)	
	
Summary.		The	entire	process,	from	the	Client	Hello	message	to	the	transmission	of	the	first	
encrypted	application	data,	took	0.24	seconds.	Let's	recap	the	cryptographic	methods	we	saw	
used:	
	

• Secure	random	number	generation	was	used	to	produce	the	initial	28-byte	random	blocks	sent	
by	both	client	and	server,	and	to	generate	the	premaster	secret.	

• RSA	digital	signatures	were	used	to	authenticate	the	server	to	the	client.	The	client	verifies	the	
signature	on	the	server's	certificate	using	the	public	verification	key	on	the	certificate	
authority's	certificate.	

• RSA	encryption	was	used	by	the	client	to	encrypt	the	premaster	secret	with	the	server's	public	
key,	obtained	from	the	server's	certificate.	

• AES	symmetric	encryption,	with	256-bit	keys	and	128-bit	blocks,	was	used	to	send	encrypted	
HTTP	messages	between	client	and	server.	

• Cryptographic	hash	functions	were	used	in	three	different	places:		as	part	of	the	pseudo-random	
function,	to	hash	the	server's	certificate	for	signing/signature	verification,	and	to	compute	and	
verify	the	MAC	tag	on	the	encrypted	message.	

	
	
	
	
	 	

#We define the PRF as specified in the standard, except we add a fourth 
parameter 
#for the number of blocks to output.   
 
def prf(secret,label,seed,numblocks): 
    seed=label+seed 
    output = '' 
    a=hmac.new(secret,msg=seed,digestmod=hashlib.sha256).digest() 
    for j in range(numblocks): 
        output += hmac.new(secret,msg=a+seed,digestmod=hashlib.sha256).digest() 
        a=hmac.new(secret,msg=a,digestmod=hashlib.sha256).digest() 
    return output 

Figure	13:	The	pseudorandom	function	in	TLS	v	1.2.	

#Compute the master secret from the premaster secret. 
#premaster_secret, client_random and server_random have string type, that 
#is they are sequences of bytes represented as strings, 
#so the addition in this code is concatenation of strings. 
 
#We want 48-bit output, so we need to call prf to produce two 
#32-bit blocks 
 
def master_secret(pms,client_random,server_random): 
    out=prf(pms,"master secret",client_random+server_random,2) 
    return out[:48] 

Figure	14:	Computation	of	the	master	secret	from	the	premaster	secret.	



	#generate the key block.  We will need 20+20+32+32=104 bytes, so we need 
#to generate 4 blocks and partition.  We are just doing the case AES256CBC-
SHA 
 
def keyblock(ms,client_random,server_random): 
    u=prf(ms,"key expansion",server_random+client_random,4) 
    return (u[:20],u[20:40],u[40:72],u[72:104]) 

Figure	15:	Computation	of	the	keyblock	from	the	master	secret.	

%3B%20s_sq%3Dtargetcomprod%252Ctargetusglobal%253D%252526pid%25253Dcheckout%2525
253A%25252520view%25252520%25252526%25252520manage%25252520cart%252526pidt%25253
D1%252526oid%25253Dhttp%2525253A%2525252F%2525252Fwww.target.com%2525252Fcheckou
t_process%252526ot%25253DA%3B; 
tgtakalb=pkyvprod1\r\n\r\n\xb9L&(\x95\x05`w\xc8\rY\xc6\x8fbH\xc1\x10\xd9\x8a\xc7
\n\n\n\n\n\n\n\n\n\n\n 

Figure	16:	The	end	of	the	decrypted	application	data.		The	last	11	bytes	are	padding,	and	the	20	bytes	before	that	are	the	
MAC	tag.	


