1
Consider the language L_1 generated by the regular expression

$$a(a \cup b)^*b \cup b(a \cup b)^*a.$$

(a) For each of the following four strings, tell whether or not the string is an element of L_1:

$$ab, aba, baa, baabb.$$

(b) Draw the state-transition diagram of an NFA that recognizes L_1. Do this with as few states and arrows as you can.

(c) Use the subset construction to find the state-transition diagram of a DFA that recognizes L_1. You do not need to include all the subsets of the states in your NFA from part (b), only those that are reachable from the initial state.

2
Find a regular expression for the set L_2 of strings over $\{a, b, c\}$ that do not contain an occurrence of the segment ac. Show your work carefully.

3
Consider the operation κ on strings over $\{a, b\}$ that replaces each occurrence of b by ab. For example, if $w = abba$, then $\kappa(w) = aababa$. Prove that if $L \subseteq \{a, b\}^*$ is a regular language, then the set

$$\{\kappa(w) : w \in L\}$$

is also a regular language. Your argument can use regular expressions or automata, but it must be sufficiently general to apply to all regular languages L. At the same time, you can and should illustrate your argument with a single example.
Tell whether each of the following general statements is true or false. If true, give a brief explanation (as part of your explanation, you may cite theorems that were proved either in class or in the textbook). If false, give a counterexample.

(a) If $L \subseteq \{a, b\}^*$ is a regular language, then so is the set of all strings in L whose last symbol is b.

(b) The intersection of two nonregular languages cannot be regular.

(c) The complement of a nonregular language cannot be regular.

(d) If there is an DFA with 5 states recognizing L, then there is a DFA with no more than 5 states recognizing L^R.