
Tiling Problems

This document supersedes the earlier notes posted about the tiling problem.

1 An Undecidable Problem about Tilings of the Plane

The undecidable problems we saw at the start of our unit on undecidability were all ques-
tions about the behavior of computer programs. But in fact there are many decision
problems which, on the surface, have nothing to do with computer programs yet can still
be proved to have no algorithmic solution. One of these is a tiling problem. Imagine square
tiles divided into colored triangular quadrants.

The problem is to determine whether we can cover a quandrant of the infinite plane
with these tiles in such a manner that the colors on adjacent tiles match up. Even if we
have just one type of tile, but are allowed to rotate it it 180 degrees, then we can cover the
entire plane.

1

Let us make a rule that we are not allowed to turn tiles in this fashion. In that case,
our single tile does not suffice to cover the plane, but the set of two tiles

2

does. If we wanted to, we could enforce this restriction on turning by designing the tiles
with little slits and notches so that the would only fit together in one orientation.

Here is our general statement of the tiling problem: An instance of the problem is a
finite set T of tile types, together with a specification of a distinguished corner tile c ∈ T.
Each tile is a sequence t = (n, e, s, w) of four symbols, which serve to identify the colors at
the top, right, bottom and left edges of the tile. A tiling is a function f : N×N→ T that
tells which tile is associated to each square on the infinite quarter-plane. The requirement
of consistency of colors can be written as a pair of conditions

f(i, j)1 = f(i, j + 1)3, f(i, j)=f(i, j + 1)4

for all i, j ≥ 0. (In other words, the first (= top) color of the tile in position (i, j) is the
same as the third(= bottom) color of the tile in position (i, j + 1), etc.) The requirement
that the corner tile be placed in the corner is expressed formally as

f(0, 0) = c

A problem instance < T, c > can thus be encoded as a finite string of symbols, repre-
senting the set of tiles along with the special corner tile.

We will prove:

Theorem 1 The language

{< T, c >: there is a tiling f : N×N→ T with f(0, 0) = c}

is undecidable.

We have formulated this decision problem as a language. Informally what this says is
that there is no computer program that takes as input a specification of the set T of tile
types and the corner tile, and answers correctly whether the infinite quarter-plane can be
tiled. As usual, the proof of undecidability will be done by a reduction from a problem
we already know to be undecidable. Strange as it seems, we can reduce a version of the
halting problem for Turing machines to this tiling question, and the proof is pretty easy.

3

Let M be a Turing machine with initial sate q0. We’ll denote the blank symbol by B.
We’ll describe a finite set T of tiles associated with M . The colors on these tiles will be
drawn from the set

{+, ∗, ∗∗} ∪ Γ ∪ Γ× 0 ∪Q× Γ ∪Q× Γ× 0 ∪Q× L, R,

where Q is the state set and G is the tape alphabet.
Our set includes the tile:

For every tape symbol g ∈ Γ, our set includes the two tiles

The left-hand tile should be considered a variant of the one on the right; tiles with a 0
component in the top and bottom colors and two stars as the left color are meant to tile
the left-hand wall of the quadrant.

For each right-moving transition (p, a)→ (q, b, R) (in state p, reading symbol a, change
a to b, change to state q and move right), and for each tape symbol c, our set includes the
three tiles

4

For each left-moving transition (p, a) → (q, b, L) and each tape symbol c, our set in-
cludes the three tiles

5

Finally, our corner tile is

6

The first important thing to observe is that given the specification of a Turing machine,
we can produce the finite set of tiles associated with it: That is, there is an algorithm that
takes input < M > and produces the assoicated < T, c >. We have just described this
algorithm.

Now let us see what it takes to tile a quadrant of the plane with this set of tiles. The
placement of the corner tile is forced, and once that is done we have no choice about how
to tile the first row:

To continue the tiling, there is at most only one possible tile we can put at the start of
the second row, and this necessitates a transition of the form (q0, B) → (p, a,R). This in
turn forces the tiling for the remainder of the second row: Notice that the labels of the top

edges of the first row spell out the initial configuration of the machine when started on a
blank tape (you need to ignore the 0 in the leftmost column). The top edges of the second

7

row spell out the configuration that follows from this one. The only way to continue the
tiling into a third row, is to match the color (p, B) in the second column, and the only way
to do this is to have a transition (p, B) → (p′, c, R) or (p, B) → (p′, c, L). This will force
the tiling of the entire third row, and the labels at the tops of these tiles will again spell
out the subsequent configuration.

Thus we can tile the complete infinite quadrant if and only if M runs forever when
started on a blank tape. So if we had an algorithm for deciding the tiling problem, we
would have one for deciding if a Turing machine halts or runs forever when started on a
blank tape.

To see that this latter problem (a simple variant of the halting problem) is undecidable,
we will reduce our original version of the halting problem to it. Suppose we had an
algorithm to decide whether a given machine halts when started on a blank tape. We
could then determine for arbitrary M and w whether M ever halts when started on w.
Given M,w, construct a Turing machine M ′ which when started on a blank tape, writes
the string w and then simulates M. Then M ′ halts on a blank tape if and only if M halts
on w.

The theorem we have just proved illustrates the utility of the Turing machine model of
computation. Because it is so simple, and because the syntactic restrictions are so few, it
is relatively easy to simulate the behavior of Turing machines in a variety of combinatorial
problems.

2 An NP-Complete Problem about Tilings of the Plane

An instance of the bounded tiling problem is a finite set T of tile types, as above, and a
sequence (t1, . . . , ts) where each ti ∈ T, and where the left edge of ti+1 has the same color as
the right edge of ti (so that this sequence is the start of a consistent tiling of the first row).
If there are k different tiles then there are no more than 4k different colors, so each color
can be encoded in O(log k) symbols. Thus the set T can be encoded by O(k log k) symbols,
and the sequence by O(s log k) symbols. So the length of the input is N = O((s + k) log k)
.

An input is accepted if there is a tiling of the s× s square {0, ..., s− 1} × {0, ..., s− 1}
with the given tiles such that the first row of the tiling is the one given in the problem
instance.

Note that this problem is decidable by the brute force algorithm of trying out every
possible tiling of the remaining s2 − s cells with tiles from T, and checking whether the
tiling is consistent.

Let us first see that this problem is in NP: A prospective tiling is given by guessing a
sequence of s2 tiles. The sequence is encoded by a string of length O((s log k)2) = O(N2),
so the time required to produce the guess is bounded above by a polynomial in the size
of the input. To verify that the guess is a correct tiling, we have to examine each edge of

8

the s2 tiles, so roughly 2s2 pairs of edges must be inspected, which is still polynomial in
the original input size. Note that if we had not given the first row and just encoded s in
binary, then the size of the guessed tiling could have been exponential in the size of the
input. This is the reason for insisting that the whole first row be given–to ensure that the
size of a tiling be polynomial in the size of the input.

Now let us suppose this tiling problem is actually in P. We want to show that every
problem in NP must then be in P. Let L be in NP. Then L is recognized by a nondeter-
ministic Turing machine M such that for some c, r > 0, every computation of M on an
input of length n terminates (in acceptance or rejection) after no more than cnr steps.

Let us tweak M a little bit to make a new machine N : N behaves exactly like M,
except whereveve M has a transition into the accept state:

(q, a)→ qaccept,

N instead runs forever. That is, we add a new state called qforever and replace each
transition of the above form by the transitions

(q, a)→ (qforever, a, R)

(qforever, b)→ (qforever, a, R),

for all tape symbols b.
Note the critical property of N : For every input string w, every computation of M on

w ends after at most c|w|r steps, and M accepts w if and only if some computation of M
on w ends in the accept state. Thus M accepts w if and only if some computation of N
on w lasts for at least c|w|r + 1 steps.

So, given M and w, we construct N as just described. We use the transition function of
N to construct a set of tile types T as described in the preceding section (note that nothing
in that construction requires the Turing machine to be deterministic). Let w = a1 · · · an.
We add a different corner tile with ∗∗ at left, + at bottom, (q0, a1, 0) at top, and B at
right, and n − 1 additional tiles with + at bottom, B at left and right, and a2, . . . , an at
top. Set s = c|w|r + 1 and specify the first row of the tiling: The first n tiles in the row are
the corner tile just specified, followed by the n − 1 tiles with labels a2, . . . , an at the top;
the remaining s− n tiles in the first row are the ones with B at top, right, and bottom.

Note that it takes time polynomial in the length of w to extract this description of the
set of tile types and the first row. Once again, tiling of the subsequent rows is possible
if and only if there is a computation of N whose successive configurations match the top
colors in each row. In particular, tiling the first s = c|w|r + 1 rows is possible if and only
if M accepts w.

Thus if we had an algorithm for deciding the bounded tiling problem in polynomial
time, then for every language L in NP, we would have a polynomial-time algorithm to
decide whether w is in L, and thus P would be equal to NP. We say that the bounded

9

tiling problem is NP-complete. This means that, first, it is in NP, and second, that every
probably in NP can be reduced to it in polynomial time. Proving that a problem is NP-
complete is often taken as evidence that there is no efficient algorithm for solving it, since
the existence of such an algorithm would imply the result (considered unlikely) that every
problem in NP has an efficient decision algorithm.

10

