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1 A spinner (or, what does ‘probability zero’ mean?)
Figure 1 shows a game spinner. The points on the circumference of the circle are
labeled by the half-open interval

S = {x ∈ R : 0 ≤ x < 1},

We also denote this set by [0, 1) .
You can think of the spinner as a continuous analogue of a die: the whole point

of the spinner is that the outcomes are somehow ‘equally likely’. ( The spinner
is the experiment simulated by a call to the random number generator rand().)
We have no problem saying that the event

E = {x ∈ R : 0.5 ≤ x ≤ 0.75} = [0.5, 0.75].

depicted in Figure 2 has probability 0.25, since it occupies exactly one-quarter of
the circumference of the circle.

But by exactly the same reasoning, we would say that the probability of the
half-open interval [0.5, 0.75), which we obtain by removing the single point 0.75,
is 0.25. We thus would have

0.25 = P ([0.5, 0.75])

= P ([0.5, 0.75) ∪ {0.75})
= P ([0.5, 0.75)) + P ({0.75})
= 0.25 + P ({0.75}),

because the union is disjoint. This implies

P ({0.75}) = 0,
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Figure 1: A spinner

and likewise the probability of any individual point is 0. We usually think of
probability 0 as meaning that an event is impossible. But then we would be saying
that it is impossible for the spinner to land on any individual point, and so, it is
impossible that it lands anywhere at all!

In fact, we DO say that the probability of each individual point is 0, and we
just have to be careful about how we apply the intuition that probability 0 means
‘impossible’.

With this in mind, we assign to each event E ⊆ S the total length of E. This
makes sense for individual points, intervals, unions of disjoint intervals, etc. This
is the uniform probability distribution on S.

A continuous sample space can be 1-dimensional like the spinner, 2-dimensional,
or 3- or more-dimensional. In the uniform distribution model, the probability
function on a 2-dimensional sample space S assigns to each event E ⊆ S the
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Figure 2: The spinner, showing the event {x : 0.5 ≤ x ≤ 0.75}

probability1

area(E)

area(S)
.

We earlier gave the example of a dart thrown at a circular dartboard with radius
1 foot. The board has area π and the bulls-eye, which has radius 1/12,, has area
π/144 square feet. So in the uniform model, the bulls-eye would have probability
1/144. There is no strong reason to believe that this the uniform distribution is a
good model of reality. For instance, we might guess that a skillful player is more
likely to hit the little bullseye circle than to hit any other circle that has the same
area. It would still be the case that each individual outcome has probability 0, but
that says nothing about the probability space being uniform or not.

What’s different? What’s the same? In a continuous probability space, the

1Just to be honest: One of the achievements of a branch of mathematics called measure theory
is the discovery that it is actually impossible to meaningfully assign a length to every subset of
[0, 1), an area to every bounded subset of the plane, etc., as well as to develop a theory of what
constitutes a ‘measurable’ set. The upshot is that not every subset of a continuous sample space
can be considered an event and assigned a probability. Now that you’ve learned this, you can
forget it, because you will never encounter one of those bad sets in practice.
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probability axioms are just the same as they were for discrete spaces: complemen-
tary probabilities add to 1, the probability of a pairwise disjoint union of events
is the sum of the probabilities of the individual events, etc. What is different is
that the probability function is not determined by the probabilities of individual
outcomes, which typically are all 0.

2 Two spinners.
Now suppose our experiment consists of spinning two spinners. We can model
the set of outcomes as the set of ordered pairs:

S = [0, 1)× [0, 1) = {(x, y) : 0 ≤ x, y < 1}.

This is the unit square in R2. Assuming that the two spins are independent (e.g.,
no hidden mechanism in which the position of one spinner influences that of the
other) the the probability distribution is uniform. Since the square has area 1, the
probability of an an event E is equal to its area.

Here is an example: What is the probability that the value on the second spin-
ner exceeds that on the first spinner by at least 1

2
? We can write this event as

E = {(x, y) ∈ S : y ≥ x+ 0.5}.

The event is pictured in Figure 3. This right triangle with base and height both
equal to 1

2
has area 1

8
, so P (E) = 1

8
. Observe that if we had instead asked for

the probability that the second spinner value is greater than or equal to the first
spinner, the event would still be a triangle, but this time occupy half of the square,
so the probability would be 1

2
. If we had asked for the probability that the second

spinner value is exactly 1
2

plus the first value, then the event is just a line segment,
and the probability is 0.

2.1 Buffon’s Needle
Here is an amusing—and at first glance, astonishing—application of these ideas.
Mark off a large area on the floor with parallel lines one inch apart. Toss a one-
inch-long needle in the air and let it land on the floor. Perform this experiment
repeatedly, and count the proportion of trials in which the needle crosses one of
the lines. This proportion will be approximately 2/π. (The problem, in slightly
different form, was described in the 18th century by G. L. Leclerc, Comte de
Buffon, who was more famous as a naturalist than as a mathematician.)
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Figure 3: The unit square models the outcome of two spinners. The event pictured
is ‘the value on the second spinner is at least one-half more than that on the first
spinner’.
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Figure 4: Buffon’s Needle, 500 trials

Figure 4 illustrates a simulation of the experiment with 500 throws. In this
particular run, the needles crossed the line in 61.4% of trials. The correct value of
2/π is about 0.6366.

In another run, with 60000 trials, the estimate of 2/π was 0.6389.
Let’s see how this remarkable result is obtained. An outcome is where the

needle lands, and this is determined by two parameters: The cooridnates of the
lower extremity of the needle, and the angle 0 ≤ θ < π that the needle makes
with the horizontal. Now we are only interested in whether the needle crosses
one of the horizontal lines, so we don’t care about the x-coordinate at all, and we
only care about the integer part of the y-coordinate, that is the horizontal distance
0 ≤ z < 1 from the horizontal line immediately below.

So we can view the sample space as the rectangle

S = {(θ, z) : 0 ≤ θ < π, 0 ≤ z < 1}.

Here it is reasonable to assume a uniform distribution: we don’t think that any
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Figure 5: Sample space for Buffon Needle Problem, with the event ‘the needle
crosses a line’ shaded

horizontal displacement z or angle θ is more likely than any other one. So this
is just like the two spinners sample space, with slightly different scaling on the
horizontal axis.

The upper extremity of the needle has y-coordinate z + sin θ, and thus the
needle crosses the line if and only if z > 1 − sin θ. In the plot of Figure 5, this
event is the shaded area.

The probability of crossing the line is thus the area of the shaded region di-
vided by the area of the rectangle. If we turn the picture upside-down, the shaded
region is just the area under the graph of sin θ for 0 ≤ θ ≤ π, which is∫ π

0

sin θdθ = − cosπ − (− cos(0)) = 1 + 1 = 2,

and the area of the rectangle S is π, so the probability that the needle crosses a
line is 2/π, as claimed.
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2.2 Monte Carlo Integration
The foregoing example (minus the story about the needle) shows a method for
approximating an integral: To find the area of a region X (in this case the shaded
region of Figure 5), we enclose it in a region Y whose area we know (in our
example, the rectangle) and select points uniformly and at random in Y. Let N be
the number of points selected and Nhits the number of these points that are in X.
Then

Nhits

N
≈ area(X)

area(Y )
,

so we obtain an approximation of the area of X. Of course in the above example,
we knew the integral exactly, but for peculiarly-shaped regions of integration, this
method might be a practical alternative. Approximating integrals in this way is
called Monte Carlo integration.
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