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1 Central Limit Theorem
The last lecture illustrated the fact that the sum of independent identically dis-
tributed Bernoulli random variables is approximately normally distributed. This
is an instance of a much more general phenomenon—nearly every random vari-
able has this property.

To be more precise, letX be a random variable for which µ = E(X) and σ2 =
V ar(X) are defined. Let X1, . . . , Xn be mutually independent random variables,
each with the same distribution as X. Think of this as making n independent
repetitions of an experiment whose outcome is modeled by the random variable
X. Our claim is that the sum of the Xi is approximately normally distributed.
Again we adjust the mean and standard deviation to be 0 and 1; then the precise
statement is

lim
n→∞

P (a <
X1 + · · ·Xn − nµ

σ
√
n

< b) = Φ(b)− Φ(a).

This is called the Central Limit Theorem. Earlier we saw, with the Law of Large
Numbers, that the deviation of the average of n independent identical random vari-
ables from its mean approaches 0 as n grows larger. The Central Limit Theorem
says more: it tells us how that deviation is distributed.
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2 Examples.
Example. The posted iPython notebook contains graphical illustrations of several
instances of the Central Limit Theorem, with where X is (a) the outcome of a
single die, (b) a very asymmetric discrete random variable, (c) the exponential
distribution, which is a very asymmetric continuous random variable. In every
case you can see the convergence to the normal distribution.
Example. Roll a die a large number N of times, and let AN be the average roll.
What is the probability that AN is between 3 and 4? That is, estimate

P (3 < AN < 4).

We have AN = SN/N, where SN is the sum of the outcomes of N rolls. The roll
of a single die has mean µ = 3.5 and variance 35/12 = 2.91667, so the standard
deviation is about 1.708. By the Central Limit Theorem

P (3 < AN < 4) = P (3N < SN < N)

= P (
−0.5N

1.708
√
N
<
SN − 3.5N

1.708
√
N

<
0.5N

1.708
√
N

)

≈ Φ(
0.5N

1.708
√
N

)− Φ(− 0.5N

1.708
√
N

)

= 1− 2Φ(
0.5N

1.708
√
N

)

= 1− 2Φ(−0.292
√
N)

(The next-to-last last line follows from the symmetry of the normal density.)
If we’re using the scipy library, we can use norm.cdf to compute Φ. This

gives 0.8557 if N = 25. One way to think of the problem is that we are asked the
probability that a normal random variable is within 0.292

√
N standard deviations

of the mean.
Suppose instead that we are asked the inverse problem: How many rolls do we

need to make to ensure that the average roll is between 3 and 4 with probability
0.98? We then have to solve

1− 2Φ(−0.292
√
N) = 0.98,

or, equivalently
Φ(−0.292

√
N) = 0.01,
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so
N = (Φ−1(0.01)/− 0.292)2 ≈ 63.5.

In scipy we can use norm.ppf to compute the inverse cdf Φ−1.
These calculations beg the question of how big N has to be for the normal

approximation to be accurate. After all, N = 25 does not seem terribly large; is
our estimate of 0.8557 really accurate?

The textbook gives a bound on the error in the normal distribution. In more
careful work, we really should check this. Here we will just do a little reality
check and compute the probability fo N = 25 exactly, by using the convolution
function (see the posted examples). Here we find

P (3N < SN < 4N) = 0.839

and
P (3N ≤ SN ≤ 4N) = 0.871.

The agreement is very good. As with the approximation to the binomial distri-
bution, we get a better result if we go between the integer values of the discrete
distribution.

3 Normal distribution in nature.
(For details here, see the Grinstead and Snell book.)

The Central Limit Theorem holds under much weaker hypotheses: It is not
necessary for the random variables Xi to be identically distributed, only to obey
some modest requirements on the sequence of values of Xi and their variances.
We get the same conclusion about the normal approximation.

This is sometimes advanced as an explanation of a striking phenomenon:
Many measurements obtained from natural sources appear to follow a normal
distribution. A frequently cited example is people’s heights. The idea here (for
what it’s worth—I don’t find it enormously convincing) is that within an ideal-
ized population of adults, all the variation in height is due to genetic differences,
and thus the difference from the population mean can be viewed as a sum of an
assortment of mutually independent random variables, each one representing the
contribution to overall height of a specific gene. Thus the stronger version of the
Central Limit Theorem just cited applies, and the heights should be approximately
normally distributed.
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4 Is it normal?
We illustrate these ideas with numbers based on real human height data. (See the
posted iPython notebook demo, which contains the figures described below.) If
you plot a histogram of the heights, the data certainly appear to follow a kind of
bell shape–but is it really normal?

One possible visual check is to estimate the mean µ and variance σ2 from the
data. So if the data set is the sequence of values

(x1, . . . , xN)

we set

µ =
1

N

N∑
j=1

xj,

and

σ2 =
1

N

N∑
j=1

x2j − µ2.

We then superimpose the graph of the normal density on the histogram, ad-
justing the vertical scaling so that the two plots have the same maximum height.

Another visual check is to use something called a quantile-quantile plot (qq-
plot). If you want to compare experimental data

(x1, . . . , xN)

to a known distribution with cdf F, we proceed as follows: Let us sort the original
data as

x′1 ≤ x′2 ≤ · · · ≤ x′N .

For each i, we look at the rank i/N of the value x′i, and then set

yi = F−1(
i

N
).

The qq-plot is the scatter plot of the points (x′i, yi).
Let’s see what this gives us if the data follows an approximately normal dis-

tribution with mean µ and variance σ2, and we compare it against the standard
normal distribution. In this case the values xi−µ

σ
approximately follow the stan-

dard normal distribution, and thus

x′i − µ
σ
≈ Φ−1(

i

N
) = yi,
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so
x′i ≈ σyi + µ,

and thus the points of the scatter plot lie on a straight line. The notebook illustrates
how to generate qq-plots in matplotlib, as well as the result of the experiment
with the height data.
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