Lecture 15: One distribution to rule them all.
Part 2. Central Limit Theorem—Normal
Approximation to Everything
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1 Central Limit Theorem

The last lecture illustrated the fact that the sum of independent identically dis-
tributed Bernoulli random variables is approximately normally distributed. This
is an instance of a much more general phenomenon—nearly every random vari-
able has this property.

To be more precise, let X be a random variable for which y = E(X) and 0% =
Var(X) are defined. Let X1,. .., X,, be mutually independent random variables,
each with the same distribution as X. Think of this as making n independent
repetitions of an experiment whose outcome is modeled by the random variable
X. Our claim is that the sum of the X; is approximately normally distributed.
Again we adjust the mean and standard deviation to be 0 and 1; then the precise
statement is
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This is called the Central Limit Theorem. Earlier we saw, with the Law of Large
Numbers, that the deviation of the average of n independent identical random vari-
ables from its mean approaches O as n grows larger. The Central Limit Theorem
says more: it tells us how that deviation is distributed.

b) = ®(b) — d(a).



2 Examples.

Example. The posted iPython notebook contains graphical illustrations of several
instances of the Central Limit Theorem, with where X is (a) the outcome of a
single die, (b) a very asymmetric discrete random variable, (c) the exponential
distribution, which is a very asymmetric continuous random variable. In every
case you can see the convergence to the normal distribution.

Example. Roll a die a large number N of times, and let Ay be the average roll.
What is the probability that Ay is between 3 and 4? That is, estimate

P(3<AN<4)

We have Ay = Sy /N, where Sy is the sum of the outcomes of N rolls. The roll
of a single die has mean ;. = 3.5 and variance 35/12 = 2.91667, so the standard
deviation is about 1.708. By the Central Limit Theorem
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(The next-to-last last line follows from the symmetry of the normal density.)

If we’re using the scipy library, we can use norm. cdf to compute ®. This
gives 0.8557 if N = 25. One way to think of the problem is that we are asked the
probability that a normal random variable is within 0.292v/N standard deviations
of the mean.

Suppose instead that we are asked the inverse problem: How many rolls do we
need to make to ensure that the average roll is between 3 and 4 with probability
0.98? We then have to solve

1 —23(—0.292v/N) = 0.98,

or, equivalently
®(—0.292v/N) = 0.01,



SO
N = (&71(0.01)/ — 0.292)* ~ 63.5.

In scipy we can use norm.ppf to compute the inverse cdf ® .

These calculations beg the question of how big N has to be for the normal
approximation to be accurate. After all, N = 25 does not seem terribly large; is
our estimate of 0.8557 really accurate?

The textbook gives a bound on the error in the normal distribution. In more
careful work, we really should check this. Here we will just do a little reality
check and compute the probability fo N = 25 exactly, by using the convolution
function (see the posted examples). Here we find

P(3N < Sy < 4N) = 0.839

and
P3N < Sy <4N) = 0.871.

The agreement is very good. As with the approximation to the binomial distri-
bution, we get a better result if we go between the integer values of the discrete
distribution.

3 Normal distribution in nature.

(For details here, see the Grinstead and Snell book.)

The Central Limit Theorem holds under much weaker hypotheses: It is not
necessary for the random variables X; to be identically distributed, only to obey
some modest requirements on the sequence of values of X; and their variances.
We get the same conclusion about the normal approximation.

This is sometimes advanced as an explanation of a striking phenomenon:
Many measurements obtained from natural sources appear to follow a normal
distribution. A frequently cited example is people’s heights. The idea here (for
what it’s worth—I don’t find it enormously convincing) is that within an ideal-
ized population of adults, all the variation in height is due to genetic differences,
and thus the difference from the population mean can be viewed as a sum of an
assortment of mutually independent random variables, each one representing the
contribution to overall height of a specific gene. Thus the stronger version of the
Central Limit Theorem just cited applies, and the heights should be approximately
normally distributed.



4 Isit normal?

We illustrate these ideas with numbers based on real human height data. (See the
posted iPython notebook demo, which contains the figures described below.) If
you plot a histogram of the heights, the data certainly appear to follow a kind of
bell shape—but is it really normal?

One possible visual check is to estimate the mean ;. and variance o from the
data. So if the data set is the sequence of values

(x1,...,2N)
we set
1 N
n= N Zl’j,
7j=1
and
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We then superimpose the graph of the normal density on the histogram, ad-
justing the vertical scaling so that the two plots have the same maximum height.

Another visual check is to use something called a quantile-quantile plot (qq-
plot). If you want to compare experimental data

(x1,...,2N)

to a known distribution with cdf F', we proceed as follows: Let us sort the original
data as
oy <ah <o <y

For each i, we look at the rank i /N of the value 2, and then set
0
yi=F 1(N)'
The qqg-plot is the scatter plot of the points (2%, y;).
Let’s see what this gives us if the data follows an approximately normal dis-
tribution with mean y and variance o2, and we compare it against the standard
normal distribution. In this case the values *~# approximately follow the stan-

dard normal distribution, and thus
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and thus the points of the scatter plot lie on a straight line. The notebook illustrates
how to generate qq-plotsinmatplotlib, as well as the result of the experiment
with the height data.



