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Abstract. We prove that constant depth circuits, with one layer of
MOD,, gates at the inputs, followed by a fixed number of layers of
MOD, gates, where p is prime, require exponential size to compute the
MOD, function, if g is a prime that divides neither p nor gq.

1 Introduction

This paper is a contribution to the complexity theory of constant-depth circuits
with unbounded fan-in gates. The original work in this area was that of Furst,
Saxe and Sipser ([4]) and Ajtai ([1]) establishing superpolynomial lower bounds
on the size of constant-depth unbounded fan-in boolean circuit families that
compute parity.

Much recent investigation has been devoted to the question of how far the
power of such circuit families can be extended by permitting modular counting
gates and threshold gates, as well as the usual AND, OR, and NOT gates. We
are particularly interested here in the power of constant-depth circuit families
built exclusively of gates that determine whether the sum of the input bits is
divisible by ¢, where ¢ is a fixed positive integer. Our knowledge here is still quite
sketchy. We can prove fairly easily that if ¢ is a prime power then such circuit
families, regardless of size, cannot compute the AND function, but we know
very little about the power of polynomial-size families of such circuits when ¢
has at least two distinct prime divisors.

We believe that the class of languages recognized by such circuit families
is strictly smaller than NC'. We have conjectured ([2], [8]) that such circuit
families can neither compute the AN D function, nor count modulo p, where p
is a prime that does not divide g. This conjecture has a number of equivalent
natural-looking formulations in both semigroup theory ([6]) and logic ([8], [9]).

In earlier work done in collaboration with D. Thérien ([2]), we proved the first
part of the conjecture for a subclass of such circuits. Our results apply to circuits
in which there is a layer of M OD,, gates at the inputs, for some m > 1, followed
by a fixed but arbitrary number of layers of M OD, gates, where p is prime. We
established an exponential lower bound on the size of such circuit families that



compute the AND function. In the present paper, we shall prove the second
part of the conjecture for the same subclass—we establish an exponential lower
bound on the size of such circuits that compute the M OD, function, where g is
a prime that divides neither p nor m.

A similar result was proved by Krause and Pudldk ([5]), who also obtain
lower bounds for thresholds of M OD,, gates. They use a probabilistic argument
to reduce a circuit computing the M OD, function to one in which each MOD,,
gate at the input level has a relatively small fan-in, and thence derive a contra-
diction by algebraic means. Our method is entirely different, and, we think, of
considerable independent interest. We explicitly compute the Fourier coefficients
of the M OD, function over a finite field and derive our circuit lower bounds by
counting the number of nonzero coefficients.

In the next three sections we give precise definitions of the circuit model we
work with and of the Fourier transform, and we show the connection between
the two. Section 5 is devoted to the computation of the Fourier transform of the
MOD, function. In Section 6 we apply the results of this computation to obtain
our circuit lower bounds.

Throughout the paper, we use some basic notions concerning finite fields.
These are presented in most introductory textbooks on abstract algebra.

2 The Circuit Model

Let k£ > 1 be a positive integer. For each n > 0 we define a function
MODg : {0,1}" — {0,1}
by

n 1if k|(uy + -+ un
MOD (us, ., un) = {0 0th|e(rv;ise :

A MOD;, gate in a circuit is one that computes the MODj function of
its inputs, where r is the fan-in of the gate. The language M ODy, is the set
{w € {0,1}* : MOD"!(w) = 1}.

As is customary, we define a circuit with n inputs to be a directed acyclic
graph with 2n source nodes (labelled z1,Z1, ..., Ty, T,), gates at the non-source
nodes, and a single sink node. The depth of the circuit is the length of the longest
path from a source to the sink, and the size of the circuit is the number of nodes.
Let m > 1 and let p be an odd prime. We define a special (m,p) circuit to be one
in which on every path from a source node to a sink node, the first gate is either
a MOD,, gate or a MOD, gate, and every subsequent gate is a MOD, gate.
In other words, such circuits consist of a layer of MOD,, gates at the inputs,
followed by arbitrarily many layers of M OD, gates.

We also wish to define such special circuits in the case p = 2, but we will
need a slightly different definition. If p > 2, we can simulate both a NOT
gate and a fan-in two AN D gate using M OD,, gates and constants. (To obtain
AND(z,y), we feed p — 2 copies of the constant 1 to the gate, as well as z



and y.) Furthermore, we can obtain the constant 1 by feeding p copies of any
input bit to a M OD,, gate. Thus although our circuits are built exclusively with
modular gates, we may assume that they contain bounded fan-in boolean gates
as well. However, we cannot simulate a fan-in two AN D gate using only M OD-
gates. We therefore define a special (m, 2)-circuit as above, except that we use
MOD, gates in place of the MOD, gates. Alternatively, one can define special
(m,p) circuits for any prime p as containing a layer of M OD,, gates, followed
by arbitrarily many layers of of M OD,, gates and bounded fan-in boolean gates.

It is easy to show (see, for example, [8]) that for any ¢ > 0 and k£ > 2, a
MODy: gate with n inputs can be simulated by a circuit of depth O(¢) and size
O(n?) built exclusively of MODy, gates. (If k = 2 we can still do the simulation,
but we must build the circuit of MOD, gates.) In particular, special (m,p)
circuits of bounded depth can count modulo any power of p.

3 The Fourier Transform

Let r > 1, and let F be a field whose characteristic does not divide r. Suppose
F contains an element w that is a primitive r** root of unity. That is, w”™ = 1,
and for any 0 < s < 7, w® # 1. Thus 2 = {wF : 0 < k < r} contains exactly r
elements.

The set V' of functions from 2™ to F' forms a vector space of dimension r”
over F. We will consider a special basis for this vector space. Let

x=(T1,...,Tn),w = (wy,...,w,) € 2"

For v € {2, let logv be the unique element of {0,1,...,r—1} such that w'°8? = .
We define Py, € V by
Rulo) = w7 lo5n,

Let us stress that these functions are defined relative to a particular choice of
the field F and primitive rt* root w.
We wish to show that the functions P, form a basis for V. To do this, we
first define a bilinear map
<> VxV-F

by
< fi,f2>= Z [ f(xh),
xEN"
where x~* denotes (z;',...,z;') when x = (21,...,2,).

Now observe that if v # w, then for some ¢, u = v;w; # 1. Thus there exists
2z € F such that

< Py,Py >=12 Z ul®8? = z(u" —1)(u—1)"1 =0,
zeN
since u” = 1. On the other hand, if v = w, then

<P, Py>= ) 1=1"-1#0,
xeN™



since the the characteristic of ¥’ does not divide r. These orthogonality relations
imply immediately that the P, are linearly independent. Since there are r™ =
dimV such functions, they form a basis for V. The orthogonality relations further
imply that when f € V is expressed in terms of this basis, that is, when

f= cwPw,

we "

then )
cw=—<f,Py >.
,r.n
If f € V, then the function T'f € V defined by

(TF)(W) =< f,Pw >= Y f(z)Pu(x"")

xEeN™

is called the Fourier transform of f. The value of the Fourier transform of f
evaluated at w is thus, up to a constant non-zero multiple, the coeflicient of Py,
when f is written in terms of this basis.

If w € 2", we define a function

Qw:{0,1}" > F
by

Qwug, ..., up) =wi" - -wpm.

In essence, we are identifying {0, 1} with {1,w} and considering the restriction of
Py, to {0,1}". The functions Qw span the vector space of functions from {0, 1}"
into F, but do not form a basis for it. Thus a function in this space will have
many different representations as an F-linear combination of the Q.

For v,w € 2" as above, we denote by v-w the componentwise product
(viwi, ..., vpwy). Obviously Py .. is equal to the pointwise product Py Py, . Sim-
ilarly, Qv.w = QvQw-

4 Algebraic Representation of Circuit Behavior

Let us suppose that 6 : {0,1}" — {0,1} is computed by a special (m,p) circuit
of size s and depth d. We will suppose in this section that p does not divide
m. Let 7 be a multiple of m such that p does not divide r. (In the applications
we will choose r = m or r = 2m.) For every k > 0, there is a finite field of
characteristic p with p* elements. Since p is a unit in the ring of integers mod r,
we may choose k so that r[p¥ — 1. F* = F\{0} is a cyclic group of cardinality
p* — 1. Thus if we let g be a generator of F*, and set w = g, where t = IFT;I\,
then w is a primitive r** root of unity.

We can thus define the functions )y and P, with respect to F' and w. Since
{0,1} C F, we can view 6 as a function from {0, 1}" into F. We will show how to
use the circuit to express 6 as a linear combination of the Qw. As we construct



the expression, we will be concerned with bounding the number of distinct Q.
that occur.

We construct the expression by induction on the depth of the circuit. If d = 0,
then 0(uy,...,u,) = u; or 8(uy,...,u,) =1 —u;. Observe that

u; = (W = 1)/(w—1).

Since both w% and the constant function 1 are among the @, we obtain ex-
pressions for § with no more than two terms. Suppose now d = 1 and the output
gate is a M OD,, gate. Then

O(ui, .-, up) = MOD(vy,...,0,),
where for each i, either v; = u; or v; = 1 — u;. Since z/F1=1 =1 for all z € F*,
O(ug,y ..., up) =1— (w#(vl—i-....;.vn) _ 1)|F\—1‘

Now wm (1++vn) ig one of the functions Qw, and, as we noted in the last
section, the product of two of the Qv is another one of these functions. Thus we
can expand the right-hand side of the above equation and express it as a linear
combination of |F| of the Q. Finally, suppose d > 0 and the output gate is a
MOD, gate. In the case where p is odd, we have

R |F|—1
0(u1,...,un)=1—(Zgi(ul,...,un)) ,
=1

where R < s, and each g; is computed by a special (m,p) circuit of depth d — 1.
If we express each g; as a linear combination of no more than M of the Qw, we
obtain an expression for 8 as a linear combination of no more than s/¥1=1A7I1Fl-1
of the Qw. If p = 2, the output gate in the inductive step is a M OD,4 gate. We
can replace the MOD, gate by a circuit with a layer of M OD- gates at the
input, a layer of NOT gates, a layer of fan-in two AND gates, and a layer of
MOD; gates. Observe that

and
AND(g1,92) = g1 * g2-

In particular, if g; and g are both expressed as linear combinations of no more
than K of the Qw, NOT(g1) can be expressed as a linear combination of not
more than K + 1 of the Qw, and AND(g;,g2) as a linear combination of not
more than K2 of the Q.

It follows that in either case, # can be written as a linear combination of
the Qw in which the number of terms is bounded by a polynomial in s. The
polynomial depends only on d and |F|, and |F| in turn depends only on p and r.

The remarks in this section establish the following result on the algebraic
representation of special (m,p) circuits.



Lemmal. Let d > 0, m > 1, r a multiple of m, and p a prime that does not
divide r. There exist a polynomial H, which depends only on d,p and r, and a
finite field F of characteristic p with a primitive r** root of unity w, such that the
following property holds: If 6 : {0,1}™ — {0,1} is computed by a special (m,p)
circuit of size s and depth d, then

0= Z chwa

weD

where each cy belongs to F, and where D C 2™ has no more than H(s) elements.

A different version of this lemma is proved in [2]. In that paper we do not
deal with circuits directly, and instead consider programs over finite solvable
groups. We showed that if the solvable group has a special form—namely, if it
is an extension of a p-group by an abelian group—then the boolean function
computed by the program can be expressed as a linear combination of the Q,
where the size of the expression depends polynomially on the size of the program.
In [8] it is proved that programs over solvable groups capture precisely the power
of bounded-depth circuits with modular counting gates of a fixed modulus. In
the construction of [8], special (m,p) circuits correspond to the solvable groups
of the form described above. In the present paper we do not really need the
program model, so we have chosen to do everything in terms of circuits.

5 The Fourier Transform of the M OD, Function

Now let us suppose that p and ¢ are distinct primes, r > 2, and that neither p
nor ¢ divides . Let F be a field of characteristic p with a primitive 7** root of
unity w. We define

Opn : {L,w,...,w"}" > F

by
0,0 (x) = MODj (logxy,...,logzy,) if x € {1,w}"”
EE N N otherwise ’

where x = (21,...,Zp).

In this section we will compute the Fourier coefficients of 8, ,,. Our goal is to
show that exponentially many of the coefficients are nonzero. This will be used in
the next section to show that M ODy cannot be written as a subexponential-size
linear combination of the Q.

Let w = (w,...,w).

(Teq,n)(w) = Z 0q7n(x)w*(01 log z1+++cn logz,)
xenn
= Z wf ZieA Cq
AC{0,1}"
a|4]



Observe that the inner summation in the last line is the coefficient of y7¢ in
the polynomial

(T +w™y) - (1 +w™"y),

so that (T'0,,,)(w) is the sum of the coefficients of degree divisible by ¢ in this
polynomial. Now suppose that n is a multiple of r, so that n = rs, and choose
w so that for each k € {0,...,r — 1}, exactly s of the ¢; are equal to k. The
number of such w is the multinomial coefficient

n!

(shr

By Stirling’s formula for factorials, this is at least #"n), where () is a polynomial.

In this case (T'6,,,)(W) is the sum of the coefficients of degree divisible by ¢ in

the polynomial
S

[(T+»)A+wy)--- 1+ "y

The coefficient of y* in ]/ ") (1 + w'y) is the k** elementary symmetric polyno-
mial in 1,w, . ..,w"!, which is (—=1)* times the coefficient of y"~* in [[}—, (y —

w?) = y" — 1. Thus,
[T+ )1 +wy) - (1+w" )] = 1+ (-1)"y")".

Since r is relatively prime to ¢, rt is divisible by ¢ if and only if ¢ is divisible by
q. This gives

() - (2) + (;q) —---if r is even and q is odd

(Tqn)(w) = { () + () + () + - otherwise

Let us denote the alternating sum on the right-hand side of the above equa-
tion by K, 4, and the positive sum by L, ,. We stress that the two sides of these
equations are elements of F. Since F' has characteristic p, the binomial coeffi-
cients on the right-hand side are to be taken modulo p. Thus K(; 4 and L, g
should be thought of as elements of the ring Z, of integers modulo p.

Lemma?2. K, , and L, ; are eventually periodic in s. That is, there exist sq, 1,52 >

0 such that for all s > sg, Ks g = Kgys,,q, 0nd Lg g = Loty 4.

Proof. For 0 < j < gq, let Ks(fg denote the sum of the coefficients of degree
congruent to j modulo ¢ in the polynomial (1 — y)°. Thus K; 4 = K §?q). Since

(1—9)"" = (1 -y)*(1 —y), we have

%)

D= K- K4,



(We compute the difference j — 1 modulo ¢, so that 0 —1 = g — 1.) Thus the

vectors
(K, K{D)

8,97
are obtained by repeatedly applying a g-dimensional linear transformation 7
over the integers modulo p to the vector

(K&, K5 ) = (1,0,...,0).

Since the space Z{ is finite, we will have 7*0+*1 = T*° for some sg,s; > 0, which
gives the desired result in the first case. The argument for L, , is essentially
identical; we simply consider the polynomial (1 + y)® in place of (1 — y)®.

Lemma3. K, , and L, , are nonzero for infinitely many values of s.

Proof. Let us first recall a few facts about arithmetic in Z, : If 0 < k < p, the
binomial coefficient (?) is zero modulo p, and thus for any a,b € Z,, (a + b)P =
aP? + bP. The nonzero elements of Z, form a cyclic group of order p — 1 under
multiplication, and thus for all elements a of Z,, a? = a. We thus have

i S N\ P ki S .
L+9)7 = (1 +9))r = (3 ()y) =2 ()y
—~\j —~\j
j j
Equating the coefficients of two ends of this equation, we find (’;s) =0, if p does

not divide j, and (’;f) = (:)p =(7)-
Thus,

o= (3)- () 5)-
)

The next-to-last equality follows because either p is odd, in which case
(=1)» = —1, or p = 2, in which case —1 = 1. Thus

1 =Kig=Kpg=Kp,y=
An analogous argument establishes the result for Ly 4.

Lemmad4. There is a polynomial M such that

Hw : (T8y,n) (W) # 0} > M(n)’

for all sufficiently large n.



Proof. First suppose that r is even and ¢ is odd. By Lemma 2 for sufficiently
large values of s, K, , is periodic with period s;, and thus by Lemma 3, every
interval of s; successive values of K, , contains a nonzero element. Thus, there
is a nonnegative integer a < rs; such that n —a is divisible by r, and, if t = -2,
K , is nonzero.

It follows from the above remarks that there is a polynomial @ such that

n—a

T645—q has at least m nonzero values. Let w = (wy,...,w,) € 2™ * and

let w' € 2™ denote the vector obtained by padding w with a 1’s. Then

(TOy,n)(W') = 1" Z Oq,n—a(X)wy o1 "'w;—l(;g e

xEQn—a
=rt (T‘gq,n—a)(w)-

a

Since r® # 0, this shows that 70, , has at least % nonzero values. We can
thus choose M (n) to be a polynomial greater that "5 times the maximum of
Q(n), Q(n —1),...,Q(n — rs1) to obtain the result.

In the case where r is odd or ¢ = 2, we argue identically, using the corre-

sponding results for the sums L, 4.

6 The Circuit Lower Bounds

Theorem 5. Let m > 2,d > 0, and let p and q be distinct primes, where q does
not divide m. There is a constant ¢ > 1, depending on m,p,q, and d, such that
any special (m,p) circuit computing the M ODy function has size at least c™.

Proof. Of course, we need only show this for sufficiently large values of n, since
we, can, if necessary, adjust the value of ¢ to account for a finite number of
exceptions. We can also assume that p does not divide m : If p divides m, then
we can write m = p'm/', where p does not divide m’. Since m’ and p are relatively
prime, we can simulate a M OD,, gate by the AND of a MOD, gate and a
MODy, gate. As remarked earlier, we can simulate the M ODp: and the fan-in
2 AND gate by a fixed number of levels of MOD,, gates (or MOD, gates in
case p = 2). All this entails at worst a polynomial blowup in the size of the
circuit, so an exponential lower bound obtained for the size of the special (m', p)
circuit obtained in this manner gives the desired exponential lower bound for
the original special (m,p) circuit.

We first consider the case where p and ¢ are both odd. Let » = 2m. Thus p
does not divide r, so we may choose a field F' as in Lemma, 1. Let C be a special
(m,p) circuit of depth d that computes MOD7. Let us denote by |C| the size of
C. By Lemma 1, there is a polynomial H, depending only on m, p, and d, such
that MODY is an F-linear combination of H(|C|) of the functions Qw. That is,

MOD} = )" cwQuw,

weD



where |D| < H(|C|). Now consider the function

8= Z CwPu.

weD

Observe that 8 and 6, , are equal on elements of {1,w}". Let v : 2" — F be
defined by

~(v) = {1ifv € {1,w}”

0 otherwise

We have
(Ty)(w)= Y Pulx?)
xe{l,w}"
= 2. Ilw’
AC{0,1}~ icA
n
i=1
Since r = 2m, w™ = —1. Thus Ty is nonzero at exactly (r — 1)" elements

of 2™. We can consequently write v = Y _pdwPw, where |E| = (r —1)". We
now have

Opn=Bv= D cvdwPow.

(v,w)EDXE

Thus T8, , is nonzero at at most H(|C|) - (r — 1)" elements of 2. By Lemma
4, there is a polynomial M such that

r

H(C)) > (—=)"/M(n)

r—1

for sufficiently large n. Since H(|C|)) < C¥for some positive integer f, we have

¢> { (r — 1) } ’
for sufficiently large n.

In the case where p = 2, we choose r = m. We still have —1 € {2, because
1 = -1, so we may argue precisely as above.

In the case where ¢ = 2, we must again choose r = m in order to insure that
q does not divide 7. In this case —1 is not in (2, so we must change the argument
slightly. Let 0 : 2" — F be the function defined by

1 if v e {1,w}"™ contains an even number of 1’s
d(v) =4 —1if v € {1,w}" contains an odd number of 1’s
0 ifvée{lw"



Now 4 = 63 ,,, and

n

@Hw)= Y (DA [wi' =[a-w.

AC{0,1}n icA i=1

Thus T'6 is nonzero at exactly (r — 1)™ elements of 2", and we may argue as in
the first case.

7 Related Problems

It is quite easy to show that constant-depth circuit families built entirely from
MOD, gates, where p is prime, cannot compute the AND function, regardless
of size: We can represent the function g : {0,1}" — {0,1} computed by such
a circuit as a polynomial over Z, in the variables zi,...,z,. Observe that if
g1i,---,gr are such polynomials, then

MODI(g1,...,9:) =1— (g1 + -+ )P,

which is a polynomial of degree no more than p — 1 times the maximum of the
degrees of the g;. Thus a circuit of depth d is represented by a polynomial of
degree no more than (p—1)<, that is, of constant degree, independent of n. On the
other hand, every function from {0,1}" into Z, has a unique representation as
a linear combination of the monomials x;, - --x;,, 1 < i1 < iz < ---ix < n. Since
the unique representation of the AND function in this form is the monomial
Z1 - ZTpn, which has degree n, we obtain the result. See [7] for a discussion of
the representation of circuit behavior in this form. In the language of programs
over groups, this result says that the AN D function cannot be computed by any
family of programs over a p-group. In [2] this is extended to nilpotent groups.

In [8] it is shown that if p and ¢ are distinct primes, then we cannot recognize
MOD, by any constant-depth family of circuits built from MOD,, gates alone.
The proof there uses a group-theoretic argument, and appeals to a result in [2].
Here we use our results on the Fourier representation of the M OD, function to
obtain a direct proof of this fact.

Theorem 6. Let p and q be distinct primes, and let d > 0. If n is sufficiently
large, then no circuit of depth d built entirely from MOD), gates can compute
the function MODy.

Proof. If such a circuit exists, then MODy is represented as a polynomial of

degree t = (p—1)? over ZP. Let us choose a finite field F' of characteristic p such
that ¢ does not divide r = |[F*|. Then F contains a primitive r** root of unity
w. As before, we observe that

2 = (@ —1)/(w—1),

and thus every monomial of degree ¢ is a linear combination of no more that 2
of the functions Q.. Since there are O(n!) monomials of degree no more than



t, we obtain a representation of MOD} as a linear combination of O(n‘) of the
@w- But in the proof of Theorem 5, we showed that any such representation
requires exponentially many terms, a contradiction.

Krause and Pudlék also obtain lower bounds for the size of circuits consist-
ing of a layer of M OD,, gates, followed by a single threshold gate: such circuits
cannot compute M ODp, where g is a prime that does not divide n, in subexpo-
nential size. We believe that the Fourier methods we use in the present paper can
be adapted to obtain similar results; in this case we want to choose the primitive
root w to be an element of the field C of complex numbers and consider the
Fourier transform over C. Some results in this vein for the case m = 2 (where
the primitive root is -1 and one can take the ground field to be the field of real
numbers) were obtained by Bruck [3].
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