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Abstract

Two results by Schützenberger (1965) and by Mc-
Naughton and Papert (1971) lead to a precise description
of the expressive power of first order logic on words inter-
preted as ordered colored structures. In this paper, we study
the expressive power of existential formulas and of Boolean
combinations of existential formulas in a logic enriched by
modular numerical predicates. We first give a combina-
torial description of the corresponding regular languages,
and then give an algebraic characterization in terms of their
syntactic morphisms. It follows that one can effectively de-
cide whether a given regular language is captured by one of
these two fragments of first order logic. The proofs rely on
nontrivial techniques of semigroup theory: stamps, derived
categories and wreath products.

1. Introduction

There is by now an extensive literature on the expres-
sive power of various fragments of first order logic inter-
preted on finite words. There are also known connections
with several areas in mathematics and computer science, in-
cluding finite semigroups, automata, descriptive set theory,
complexity, circuits and communication complexity. Fur-
ther, this research is a necessary step towards the study of
richer structures like infinite words, trees or graphs. This
paper is a contribution to this theory.

Let us briefly describe the framework of our results. We
associate to each nonempty word u = a0a1 . . . a|u|−1 over

the alphabet A a relational structure

Mu = {(0, 1, . . . , |u| − 1), <, (a)a∈A}

where < is the usual order on the domain and a is a predi-
cate giving the positions i such that ai = a. For instance,
if u = abbaaba, then a = {0, 3, 4, 6} and b = {1, 2, 5}.
Given a formula ϕ, the language defined by ϕ is L(ϕ) =
{u ∈ A+ | Mu satisfies ϕ}. Since languages may contain
the empty word, we make the convention that a language L
of A∗ is defined by ϕ if L(ϕ) = L ∩A+.

McNaughton and Papert [11] showed that a language is
first-order definable (in the signature {<, (a)a∈A}) if and
only if it is star-free. The decidability of this class of regular
languages, denoted by FO[<], follows from a celebrated re-
sult of Schützenberger [20]: a regular language is star-free
if and only if its syntactic monoid is aperiodic. Thomas [27]
(see also [13]) refined this correspondence between first or-
der logic and star-free languages by showing that the con-
catenation hierarchy of star-free languages is, level by level,
in correspondence with the Σn-hierarchy of first order for-
mulas. However, little is known about the decidability of
these classes. It is not very difficult to decide whether or not
a given regular language belongs to Σ1[<]. The decidabil-
ity of the Boolean closure of this class, denoted by BΣ1[<],
relies on a nontrivial algebraic result of Simon [23]. The
decidability of Σ2[<] was also proved by algebraic meth-
ods [1, 17], but the decidability of the upper levels BΣ2[<],
Σ3[<] and beyond is a major open problem.

Several enrichments to the vocabulary < were consid-
ered in the literature. Let k ≥ 0. Recall that a k-ary numer-
ical predicate symbol associates to each n ≥ 0 a subset of



{0, . . . , n − 1}k. We view (i1, . . . , ik) ∈ {0, . . . , n − 1}k

as a word δ0 · · · δn−1 over the alphabet ∆ = 2{1,...,k} by
setting δj = {r | ir = j}. Thus each numerical predicate
symbol gives rise to a language in ∆∗. We say the numer-
ical predicate symbol is regular if the corresponding lan-
guage is regular. (Note that if k = 0, {0, . . . , n− 1}k is the
one-element set {∅}.)

Let 0 < d, and r ∈ Z/dZ. We define two numeri-
cal predicate symbols (the modular predicates): The unary
symbol MODd

r assigns to n the set {i < n | i mod d =
r}, and the 0-ary symbol Dd

r assigns {∅} to n if n mod
d = r, and ∅ otherwise. The associated languages are
(∅d)∗∅r−1{1}∅∗ and (∅d)∗∅r, respectively, so these are reg-
ular numerical predicates. Equivalently, we could introduce
a constant symbol m denoting the last position in a string,
in which case Dd

r is equivalent to MODd
r−1m. (This is the

notation that we shall adopt below.)
We denote by FO[< + MOD] the logic obtained by ad-

joining all modular predicates. This signature was consid-
ered implicitly in automata theory and explicitly in a recent
paper by Ésik and Ito [6]. It should not be confused with
first order logic with modular quantifiers.

The logic FO[<+REG] is obtained by adjoining all regu-
lar numerical predicate symbols. This logic was considered
in [2, 10, 12, 25] in connection with circuit complexity.

It is not difficult to see that FO[< + MOD] = FO[< +
REG]. However, the lower levels of the Σn-hierarchy differ
for the three signatures. The decidability of Σ1[< + REG]
and BΣ1[< + REG] was established in [10]. In this paper,
we establish the decidability of the fragments Σ1[<+MOD]
and BΣ1[<+ MOD], a problem left open in [6]. The situa-
tion is summarized in the table below:

< <+ MOD <+ REG

Σ1

DECIDABLE
[13, 27]

DECIDABLE
New result

DECIDABLE
[8, 10, 21]

BΣ1

DECIDABLE
[23, 27]

DECIDABLE
New result

DECIDABLE
[10]

...

FO
DECIDABLE
[11, 20]

DECIDABLE
[2, 25]

DECIDABLE
[2, 25]

Our paper is organized as follows. Section 2 presents the
necessary background to understand our proofs. Our main
decidability results on fragments of first order logic are
proved in Section 3 for Σ1[< + MOD] and in Section 4 for
BΣ1[< + MOD]. In the last section, we summarize our re-
sults and compare them with other decidability results.

2. The algebraic approach

In this section, we survey the algebraic approach to au-
tomata theory that is needed to state our main results. We

briefly present Eilenberg’s variety theory [4], its extension
to the ordered case [15] and its more recent generalization
to stamps [5, 6, 7, 16, 26], in a form suitable to our purpose.

2.1 Semigroups, monoids and stamps

A semigroup is a set equipped with a binary associative
operation, denoted multiplicatively, or additively when the
semigroup is commutative. A monoid is a semigroup with a
unit element. An element e of a semigroup is idempotent if
e2 = e. In a finite semigroup, every element x has a unique
idempotent power, denoted by xω .

An element s of a semigroup S is said to be regular if
and only if there exists an element s̄ of S, called an inverse
of s such that ss̄s = s and s̄ss̄ = s̄.

Given two monoids M and N , a monoid morphism is
a map ϕ : M → N satisfying ϕ(1) = 1 and ϕ(uv) =
ϕ(u)ϕ(v) for all u, v inM . A monoidM is a submonoid of
a monoid N if there exists an injective morphism from M
into N . A monoid N is a quotient of a monoid M if there
exists a surjective morphism fromM ontoN . A monoidM
divides a monoidN ifM is a quotient of a submonoid ofN .
The product of two monoidsM1 andM2 is the setM1×M2

equipped with the product (x1, x2)(y1, y2) = (x1y1, x2y2).
An ordered semigroup is a semigroup equipped with a

partial order compatible with the operation of the semi-
group. An order ideal I of an ordered semigroup (S,≤)
is a subset of S such that if x ∈ I and y ≤ x then y ∈ I .

Morphisms of ordered semigroups are order-preserving
morphisms of semigroups. The notions of ordered subsemi-
group, quotient and product are readily adapted from their
unordered version and easily extended to the monoid case.

A relational morphism between two monoids M and N
is a relation τ : M → N which satisfies

(1) for every s ∈M , τ(s) 6= ∅,
(2) for every s1, s2 ∈M , τ(s1)τ(s2) ⊆ τ(s1s2),
(3) 1 ∈ τ(1).
A stamp is a morphism from a finitely generated free

monoid onto a finite monoid. A stamp ϕ : A∗ →M is said
to be trivial if M is the trivial monoid. An ordered stamp is
a stamp onto an ordered monoid.

Let ϕ : A∗ → M be a stamp and let Z = ϕ(A). Then
Z is an element of the monoid P(M) of subsets of M ,
equipped with the product XY = {xy | x ∈ X, y ∈ Y }.
Since P(M) is finite, Z has an idempotent power. This
justifies the following definition: the stability index of a
stamp ϕ : A∗ → M is the least positive integer such
that ϕ(As) = ϕ(A2s). The set ϕ(As) is a subsemigroup
of M called the stable semigroup of ϕ and the monoid
ϕ(As) ∪ {1} is called the stable monoid of ϕ.



2.2 Stamps and languages

Stamps and ordered stamps can be seen as language rec-
ognizers in the following way. Letϕ : A∗ → M be a stamp.
A language L over A∗ is recognized by the stamp ϕ if there
exists a subset F of M such that L = ϕ−1(F ). If M is
ordered, we require F to be an order ideal of M . By exten-
sion, we say that the (ordered) monoid M recognizes L if
there exists a stamp ϕ : A∗ →M recognizing L.

A language is said to be recognizable if it is recognized
by some finite monoid. Kleene’s theorem asserts that rec-
ognizable and regular languages coincide.

Given a languageL overA∗, we define the syntactic con-
gruence ∼L and the syntactic preorder ≤L as follows:

(1) u ∼L v iff for all x, y ∈ A∗, xvy ∈ L⇔ xuy ∈ L,

(2) u ≤L v iff for all x, y ∈ A∗, xvy ∈ L⇒ xuy ∈ L.

The monoidA∗/∼L is the syntactic monoid of L and is de-
noted by M(L). It can be ordered with the partial order re-
lation induced by ≤L, to form the ordered syntactic monoid
of L. The natural morphism ηL : A∗ → M(L) is called the
syntactic (ordered) stamp of L. The syntactic monoid of L
is the smallest monoid (with respect to the division order
on monoids) that recognizes L. In particular, a language is
regular if and only if its syntactic monoid is finite.

From now on, all semigroups and monoids will be either
finite or free.

2.3 The variety approach

The general idea of the variety theory is to classify regu-
lar languages through the algebraic properties of their syn-
tactic invariants. For this purpose, Eilenberg originally
considered classes of finite monoids defined by equations,
called varieties. This gave an appealing framework in
which to study classes of recognizable languages closed un-
der Boolean operations, quotients, and inverse morphisms.

However, our classes Σ1[<+MOD] and BΣ1[<+MOD]
are not closed under inverse morphisms and the first one is
not even closed under complement. Still, they are closed un-
der inverses of length-multiplying morphisms and it is pos-
sible to adapt Eilenberg’s variety theory to this weaker set-
ting. The price to pay is the shift from the syntactic monoid
to the syntactic stamp (for BΣ1[<+MOD]) or to the syntac-
tic ordered stamp (for Σ1[<+ MOD]). The general frame-
work for this study is the theory of C-varieties, recently in-
troduced by Straubing [26].

We first recall the classical notion of varieties. A variety
of finite monoids is a class of (finite) monoids closed under
division and finite product. Varieties of finite semigroups
and of finite ordered monoids are defined analogously.

We now turn to varieties of stamps. Recall that a mor-
phism f : A∗ → B∗ is length-multiplying (lm for short) if

there exists an integer k such that the image of each letter
of A is a word of Bk. A stamp ϕ : A∗ → M lm-divides
a stamp ψ : B∗ → N if there is a pair (f, η) (called an
lm-division), where f : A∗ → B∗ is an lm-morphism,
η : N → M is a partial surjective monoid morphism, and
ϕ = η ◦ ψ ◦ f . If f is the identity on A∗, the pair (f, η)
is simply called a division. If ϕ and ψ are ordered stamps,
that is, if M andN are ordered monoids, η is required to be
order-preserving.

A∗ B∗

M NIm(ψ ◦ f) ⊆

f

ϕ ψ

η

Figure 1. A division diagram.

The product of two stamps ϕ1 : A∗ → M1 and ϕ2 :
A∗ → M2 is the stamp ϕ with domain A∗ defined by
ϕ(a) = (ϕ1(a), ϕ2(a)). The range of ϕ is a submonoid
of M1 ×M2.

An lm-variety of stamps is a class of stamps contain-
ing the trivial stamps and closed under lm-division and fi-
nite products. The definition of a variety of ordered stamps
is similar. Note that if V is a variety of finite (ordered)
monoids, then the class of all (ordered) stamps whose range
is in V forms an lm-variety of (ordered) stamps, also de-
noted by V.

We now come to the definition of varieties of languages.
A positive Boolean algebra is a set of languages that is
closed under finite union and finite intersection. If it is also
closed under complement, it is called a Boolean algebra.
Given a language L and a word u, we set

u−1L = {v ∈ A∗ | uv ∈ L}

Lu−1 = {v ∈ A∗ | vu ∈ L}

A class of recognizable languages V assigns to each finite
alphabet A a set V(A∗) of recognizable languages of A∗.
A positive variety of languages is a class of recognizable
languages V such that for any alphabets A and B,

(1) V(A∗) is a positive Boolean algebra,
(2) if L ∈ V(A∗) and a ∈ A then a−1L,La−1 ∈ V(A∗),
(3) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies

ϕ−1(L) ∈ V(A∗).
A variety of languages is a positive variety V such that, for
each alphabet A, V(A∗) is closed under complement.

Positive lm-varieties and lm-varieties of languages are
defined in the same way by weakening Condition (3) to

(3′) if ϕ : A∗ → B∗ is an lm-morphism, L ∈ V(B∗)
implies ϕ−1(L) ∈ V(A∗).



Given a variety of finite monoids V, the class V of all lan-
guages recognized by a monoid in V is a variety of lan-
guages. Eilenberg’s theorem [4] asserts that the correspon-
dence V → V is one-to-one and onto.

Similarly, if V is a variety of finite ordered monoids, the
class V of all languages recognized by an ordered monoid
in V is a positive variety of languages. It is proved in [15]
that the correspondence V → V is one-to-one and onto.

Finally, given an lm-variety of (ordered) stamps V, the
class V of all languages recognized by a stamp in V is a
(positive) lm-variety of languages. It is proved in [26] that
the correspondence V → V is one-to-one and onto.

2.4 Examples

Example 2.1 The trivial variety of monoids I consists only
of one monoid, the trivial monoid. The corresponding va-
riety of languages I is defined, for every alphabet A, by
I(A∗) = {∅, A∗}.

Example 2.2 A semigroupS is locally trivial if eSe = {e}
for each idempotent e ofS. The class of locally trivial semi-
groups form a variety of semigroups, denoted by LI.

Example 2.3 Let us denote by J+ the class of all finite or-
dered monoids (M,≤) such that, for all x ∈ M , x ≤ 1.
One can show that J+ is a variety of ordered monoids and
that a language belongs to J +(A∗) if and only if it is a finite
union of languages of the form A∗a1A

∗ · · · akA
∗, where

k ≥ 0 and a1, . . . , ak are letters of A. Further, it is shown
in [13] that J + is equal to the class Σ1[<].

Example 2.4 A monoid M is J -trivial if division is a par-
tial order on M , that is, if the conditions uxv = y and
syt = x imply x = y. The class of J -trivial monoids form
a variety, denoted by J. Simon’s theorem [22] states that
J (A∗) is the Boolean algebra generated by the languages
of the form A∗a1A

∗ · · · akA
∗, where k ≥ 0 and a1, . . . , ak

are letters of A. It follows from [27] that J is also equal to
the class BΣ1[<].

Example 2.5 A monoid M is aperiodic if there exists an
integer n such that, for every x ∈M , xn = xn+1. The class
of aperiodic monoids form a variety denoted by A. The
results of Schützenberger [20] and McNaughton and Papert
[11] show that the corresponding variety of languages is the
class of star-free languages, or in logical terms, the class
FO[<].

Example 2.6 Let MOD be the class of all stamps ϕ :
A∗ → M such that M is a cyclic group and ϕ(a) = ϕ(b)
for all letters a, b in A. Then MOD is an lm-variety of
stamps. For each alphabet A, a language of Mod(A∗) is

recognized by some stamp πn : A∗ → Z/nZ and hence
is a finite union of languages of the form (An)∗Ak with
0 ≤ k < n.

Example 2.7 Given a variety of finite semigroups V, a
stamp is said to be a quasi-V stamp if its stable subsemi-
group belongs to V. It is stated in [26] that the quasi-V
stamps form an lm-variety, denoted by QV. It was proved
in [2] that FO[< + MOD] is the lm-variety of languages
corresponding to QA.

2.5 Identities

Both varieties of finite monoids and lm-varieties of
stamps have equational characterizations [19, 9, 16]. The
same result holds for their ordered counterparts. The formal
definition of identities requires the introduction of profinite
topologies. Here we consider a simpler notion, illustrated
with a few basic examples, which implies the result.

We start by recalling an elementary fact about finite
semigroups. Let x be an element of a finite semigroup
S. Since S is finite, there exist integers i, p > 0 such that
xi+p = xi. The subsemigroup of S generated by x is rep-
resented below.

•
x

•
x2

•
x3

. . . . . . . . . . . .

&%
'$

xi+p = xi

•

xi+1

•
xi+2

•

xi+p−1
•

It is easy to see that the semigroup {xi, . . . , xi+p−1} is a
cyclic group G(x), whose identity is xω , the unique idem-
potent power of x.

An ω-term on an alphabetA is built from the letters ofA
using the usual concatenation product and two unary oper-
ators: x → xω and x → xω−1. Thus, if A = {a, b, c}, abc,
aω and ((abω−1c)ωab)ω are examples of ω-terms.

Let ϕ : A∗ → M be a stamp. The image ϕ(t) of an
ω-term t is defined recursively as follows. If t is a letter,
then ϕ(t) is already defined. If t and t′ are ω-terms, then
ϕ(tt′) = ϕ(t)ϕ(t′). If t = uω, then ϕ(t) is the unique
idempotent power of ϕ(u). Finally if t = uω−1, then ϕ(t)
is the inverse of ϕ(u)ωϕ(u) in the cyclic groupG(ϕ(u)).

Let u, v be two ω-terms on a finite alphabet B. A stamp
ϕ : A∗ → M is said to satisfy the lm-identity u = v if, for
every lm-morphism f : B∗ → A∗, ϕ ◦ f(u) = ϕ ◦ f(v). If
M is ordered, we say that ϕ satisfies the lm-identity u ≤ v
if, for every lm-morphism f : B∗ → A∗, ϕ ◦ f(u) ≤ ϕ ◦
f(v).

A monoid (ordered monoid)M satisfies the identity u =
v (u ≤ v) if for every morphism ϕ : B∗ → M , ϕ(u) =
ϕ(v) (ϕ(u) ≤ ϕ(v)).

An lm-variety V satisfies a given lm-identity if every
stamp in V satisfies this identity. The class of all stamps



satisfying a given set of lm-identities is an lm-variety of
stamps. Similarly the class of all (ordered) monoids sat-
isfying a given set of identities is an variety of (ordered)
monoids.

By extension, we say that a language L satisfies a
monoid identity (lm-identity) if its syntactic monoid (or-
dered monoid, stamp, ordered stamp) satisfies this identity.

Example 2.8 As an lm-variety of stamps, MOD is defined
by the single identity xω−1y = 1.

The variety of finite aperiodic monoids A is defined by
the identity xω = xω+1.

The variety of finite ordered monoids J+ is defined by
the identity x ≤ 1. The variety of finite monoids J is defined
by the two identities xω = xω+1 and (xy)ω = (yx)ω .

3. Expressive power of Σ1[< + MOD]

We first give a simple combinatorial description of the
languages definable in Σ1[<+ MOD].

Let us call modular simple a language of the form
(Ad)∗a1(A

d)∗a2(A
d)∗ · · · ak(Ad)∗, where d > 0, k ≥ 0

and a1, a2, . . . , ak ∈ A.

Proposition 3.1 A language is definable in Σ1[<+MOD] if
and only if it is a finite union of modular simple languages.

Proof. The language (Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(Ad)∗

can be defined by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)

∧(MODd
0 x1∧MODd

1 x2∧· · ·∧MODd
k−1 xk∧MODd

k−1 m)

This shows that any finite union of modular simple lan-
guages is definable in Σ1[< + MOD]. To prove the re-
sult in the opposite direction, consider a Σ1-formula ψ =
∃x1 . . . ∃xk ϕ(x1, . . . , xk). We may assume that ϕ is
in disjunctive normal form. Negations of atomic formu-
las can be eliminated by replacing ¬(x = y) by (x <
y) ∨ (y < x), ¬(x < y) by (x = y) ∨ (y < x),
¬(MODd

r x) by ∨s6=r MODd
s x and ¬(ax) by ∨b6=a(bx). Fur-

ther, by the Chinese remainder theorem, conjunctions of
atomic formulas of the form MODd0

r0
m∧

∧

1≤i≤n MODdi
ri
xi

can be replaced by disjunctions of formulas of the form
MODd

s0
m ∧

∧

1≤i≤n MODd
si
xi, where d = lcm(di). Al-

together, ψ is equivalent to a disjunction of formulas of
the form ∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧
akxk)∧(MODd

r1
x1∧· · ·∧MODd

rk
xk∧MODd

r m) defining the
language (Ad)∗As1a1(A

d)∗As2a2(A
d)∗ · · · ak(Ad)∗As

where, for 1 ≤ i ≤ k, s1 + s2 + · · ·+ si ≡ ri (mod d) and
rk + s ≡ r (mod d). Finally, observing that (Ad)∗Ar =
[(Ad)∗(∪a∈Aa)]

r(Ad)∗, it suffices to use the distributivity
of concatenation over union to conclude that the language

L(ψ) is a finite union of modular simple languages.

The concatenation hierarchy of star-free languages men-
tioned in the introduction is defined by alternating two types
of operations: the Boolean operations and the polynomial
closure, that we now define. Given a class of languages L,
we denote by Pol(L) the polynomial closure of L, which is
the class of languages that are finite unions of languages
of the form L0a1L1a2 · · · akLk, where L0, . . . , Lk ∈ L
and a1, . . . , ak are letters. We also denote by BPol(L) the
Boolean closure of Pol(L).

It is shown in [13] that Σ1[<] is equal to Pol(I) where
I is the trivial variety of languages. The next proposition
shows that Σ1[<+ MOD] is equal to Pol(Mod).

Proposition 3.2 A language belongs to Pol(Mod) if and
only if it is a finite union of modular simple languages.

Proof. First, Pol(Mod) clearly contains the modular sim-
ple languages. Conversely, any language of Pol(Mod)(A∗)
can be written as a finite union of languages of the form
L = L0a1L1a2 · · ·akLk, where a1, . . . , ak are letters and
L0, . . . , Lk ∈ Mod(A∗). Thus each Li is a finite union of
languages of the form (Ani)∗Ak, with 0 ≤ k ≤ ni. Let d
be the least common multiple of the ni. Setting ri = d/ni,
we observe that (Ani)∗ = ∪0≤k<ri

(Ad)∗Akni . Applying
the distributivity of concatenation over union, we may as-
sume that all Li are of the form (Ad)∗Ak. But (Ad)∗Ak can
be written as ∪a1a2···ak∈Ak(Ad)∗a1(A

d)∗a2 · · ·ak(Ad)∗. It
follows that any language of Pol(Mod)(A∗) is a finite
union of modular simple languages.

Our decidability result for Σ1[<+ MOD] relies on an al-
gebraic characterization of the polynomial closure [16, 17].
However, the formulation of this general result requires us
to introduce Mal’cev products of varieties and we prefer
here a simpler formulation.

Proposition 3.3 A language belongs to Pol(Mod) if and
only if its ordered syntactic stamp ϕ satisfies the following
property: there exists a positive integer n such that the or-
dered monoid ϕ((An)∗) satisfies the identity x ≤ 1.

Unfortunately, Proposition 3.3 does not provide a decidabil-
ity criterion for Pol(Mod). The next result fixes this prob-
lem.

Theorem 3.4 A language belongs to Pol(Mod) if and only
if the stable ordered monoid of its ordered syntactic stamp
satisfies the identity x ≤ 1.

Proof. By Proposition 3.3, it suffices to show that if
ϕ((An)∗) satisfies the identity x ≤ 1 for some n > 0, then
ϕ((As)∗) satisfies the same identity. But since ϕ(As) =



ϕ(Ans), ϕ((As)∗) = ϕ((Ans)∗). It follows that ϕ((As)∗)
is a submonoid of ϕ((An)∗) and thus satisfies the identity
x ≤ 1.

Theorem 3.4 gives a decidable condition for testing
membership in Pol(Mod). But since we know that
Pol(Mod) is a positive lm-variety of languages, it is inter-
esting to find the identities defining the corresponding vari-
ety of ordered stamps.

Theorem 3.5 A language belongs to Pol(Mod) if and only
if its ordered syntactic stamp satisfies the lm-identities
xω−1y ≤ 1 and yxω−1 ≤ 1.

Proof. Let L be a regular language, ϕ : A∗ → M its or-
dered syntactic stamp, S its stable monoid and s its stability
index.

First assume thatL belongs to Pol(Mod). Let x and y be
two words inA∗ of equal length and let u = x(s−1)ωxω−1y.
The length of u is a multiple of s and thus ϕ(u) belongs to
S. By Theorem 3.4, S satisfies the identity x ≤ 1 and hence
ϕ(u) ≤ 1. But ϕ(u) = ϕ(xω−1y) and thus ϕ(xω−1y) ≤ 1.
This proves that ϕ satisfies the lm-identities xω−1y ≤ 1. A
symmetrical argument works for the second identity.

Conversely, assume that ϕ satisfies the lm-identities
xω−1y ≤ 1 and yxω−1 ≤ 1. We claim that m ≤ 1 for
all m ∈ S. The relation is trivial if m = 1. If m 6= 1, then
m ∈ ϕ(As) = T . Since T 2 = T , it follows from [14, Chap.
1, Proposition 1.12] that m = uev for some u, e, v ∈ T
with e idempotent. Thus there exist x, y, z ∈ As such that
ϕ(y) = u, ϕ(x) = e and ϕ(z) = v. Since |x| = |y| = |z|,
one has ϕ(yxω−1) ≤ 1 and ϕ(xω−1z) ≤ 1. It follows that
ue ≤ 1 and ev ≤ 1, whence m = uev = ueev ≤ 1. This
proves the claim and shows, by Theorem 3.4, thatL belongs
to Pol(Mod).

The results of this section should be compared with the
characterization of the class Σ1[< + REG] which can be
derived from the two papers [8, 21].

4. Expressive power of BΣ1[< + MOD]

In this section we give several characterizations of the
class BΣ1[<+ MOD]. Let us start with an immediate con-
sequence of Proposition 3.1:

Proposition 4.1 A language is definable in BΣ1[<+MOD]
if and only if it is a Boolean combination of modular simple
languages.

Our second characterization is based on properties of the
wreath product. The non-specialist reader can skip the tech-
nical definitions given below, admit Theorem 4.2 and jump
directly to Theorem 4.3.

The wreath product N ◦K of two monoids N and K is
defined on the set NK ×K by the following product:

(f1, k1)(f2, k2) = (f, k1k2), with f(k) = f1(k)f2(kk1)

This definition can be extended to varieties of stamps as fol-
lows. Let V,W be two lm-varieties of stamps. A (V,W)-
product stamp is a stamp ϕ : A∗ →M such that:

(1) M is a submonoid of a wreath productN ◦K, where
N and K are finite monoids.

(2) Let π : N ◦ K → K be the canonical projection
morphism. Then the stamp π ◦ ϕ : A∗ → π(M) is in
W.

(3) For a inA, we can write ϕ(a) = (fa, π◦ϕ(a)) where
fa is in NK . We now treat K×A as a finite alphabet
and we define a stamp Φ : (K ×A)∗ → Im(Φ) ⊆ N
by Φ(k, a) = fa(k). We require Φ to be in V.

We define V ∗ W to be the class of all stamps that divide a
(V,W)-product stamp. The class V∗W is called the wreath
product of the lm-varieties of stamps V and W. It can be
shown [3] that V ∗ W is an lm-variety of stamps contain-
ing W. The wreath product is an associative operation on
lm-varieties of stamps which extends the classical wreath
product on Eilenberg’s varieties.

The wreath product principle [6, 3] gives a description
of languages recognized by a stamp of V ∗ W. It is based
on similar results for varieties of monoids [24, 18]. We only
give here a simplified version for the case W = MOD.
For each n > 0, let Bn = Z/nZ × A and σn : A∗ → B∗

n

be the sequential function defined by setting:

σn(a1 · · ·ak) = (0, a1)(1, a2) · · · (k − 1, ak).

Theorem 4.2 Let V be an lm-variety of stamps and let U
be the lm-variety of languages associated with V ∗ MOD.
Then for every alphabet A, U(A∗) is the smallest positive
Boolean algebra containing Mod(A∗) and the languages
of the form σ−1

n (V ), where n > 0 and V is in V(B∗
n).

Proof. The general Wreath Product Principle on stamps
(WPP for short) [3] makes use of slightly more involved
sequential functions that we shall introduce now. Given a
stamp ϕ : A∗ → M and an element m in M , we define the
sequential function ρm : A∗ → (M ×A)∗ by setting:

ρm(a1 · · · an) =

(m, a1)(mϕ(a1), a2) · · · (mϕ(a1 · · · an−1), an)

A sequential function ρ is said to be associated with ϕ if
ρ = ρm for somem inM . The WPP states that U(A∗) is the
smallest positive Boolean algebra containingMod(A∗) and
the languages of the form ρ−1(V ), where ρ is a sequential
function associated with a stamp ϕ : A∗ → M in MOD
and V is in V

(

(M ×A)∗
)

.



Notice first that, if ϕ : A∗ → M is in MOD then
M is a finite cyclic group, and one can thus assume that
M = Z/nZ for some positive integer n. We denote this
group additively. Further, since ϕ is surjective, there ex-
ists a generator k of Z/nZ such that ϕ(A) = {k}. Thus
ϕ is isomorphic to the stamp πn : A∗ → Z/nZ, defined
by πn(A) = {1}. Therefore U(A∗) is the smallest positive
Boolean algebra containingMod(A∗) and the languages of
the form ρ−1(V ), where ρ is a sequential function associ-
ated with some stamp πn and V is in V(B∗

n).
Now, let V be a language in V(B∗

n) and let ρk : A∗ →
B∗

n be the sequential function associated with πn and an
element k in Z/nZ. Define the lm-morphism fk : B∗

n →
B∗

n by fk(x, a) = (x + k, a), and let V ′ = f−1
k (V ). Then

V ′ is in V(B∗
n) and ρ−1

k (V ) = σ−1
n (V ′). Therefore, it is

sufficient to consider sequential functions of the form σn,
which concludes the proof.

We now arrive at our second characterization of
BΣ1[<+ MOD].

Theorem 4.3 A language is a Boolean combination of
modular simple languages if and only if its syntactic stamp
belongs to the lm-variety J ∗ MOD.

Proof. Let U be the lm-variety of languages correspond-
ing to J ∗ MOD. We first show that each language of U is
a Boolean combination of modular simple languages. By
Proposition 3.2, it suffices to show that U is contained in
BPol(Mod).

Let A be an alphabet. According to Theorem 4.2,
U(A∗) is the smallest positive Boolean algebra containing
Mod(A∗) and the languages of the form σ−1

n (V ), where
n > 0 and V belongs to J (B∗

n). Since Mod is contained
in Pol(Mod), it remains to prove that all languages of the
form σ−1

n (V ) are in BPol(Mod). Further, since σ−1
n com-

mutes with Boolean operations, we may assume by Simon’s
theorem [22] that V is equal to B∗

nb1B
∗
n · · · bpB∗

n for some
b1, . . . , bp ∈ Bn. Setting bi = (ri, ai), we observe that

σ−1
n (V ) = (An)∗Ar1a1(A

n)∗As2a2 · · · (A
n)∗AspapA

∗,

with si = ri − (ri−1 + 1) mod n, for i = 2 · · · p. Since A∗

and all languages of the form (An)∗Aj are in Mod(A∗),
σ−1(V ) belongs to Pol(Mod(A∗)).

We now prove that any Boolean combination of modular
simple languages is in U . A simple computation shows that
if

L = (Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(Ad)∗

is a modular simple language of A∗, then

L = σ−1
d (B∗

db1B
∗
d · · · bkB

∗
d) ∩ (Ad)∗Ak

with bi = (i−1, ai) for 1 ≤ i ≤ k. SinceB∗
db1B

∗
d · · · bkB

∗
d

is in J (B∗
d), L belongs to U(A∗). Finally, since U(A∗) is

a Boolean algebra, any Boolean combination of modular
simple languages of A∗ is in U(A∗).

It follows from Proposition 4.1 and Theorem 4.3 that
deciding whether a given regular language is definable in
BΣ1[< + MOD] amounts to showing that the lm-variety
J ∗ MOD is decidable. The proof requires us to introduce
derived categories [28]. In this paper, categories are viewed
as generalizations of monoids since a one-object category is
in fact a monoid.

Let C,D be two categories. A division of categories τ :
C → D is given by a mapping τ : Obj(C) → Obj(D)
and for each pair (u, v) of objects of C, by a relation τ :
C(u, v) → D(τ(u), τ(v)) such that

(1) τ(x)τ(y) ⊆ τ(xy) for any consecutive arrows x, y,
(2) τ(x) 6= ∅ for any arrow x,
(3) 1τ(u) ∈ τ(1u),
(4) τ(x) ∩ τ(y) 6= ∅ implies x = y for any coterminal

arrows x, y of C.
If V is variety of monoids, we denote by gV the class of
all categories that divide a monoid in V (regarded as a one-
object category). By transitivity of division of categories,
gV is always closed under division.

Let ϕ : A∗ →M be a stamp. For each integer n, let πn :
A∗ → Z/nZ be the stamp defined by πn(u) = |u| mod n
and let ϕn be the relational morphism ϕn = πn ◦ ϕ−1.

A∗

M Z/nZ

ϕ πn

ϕn

Let Cn(ϕ) be the category whose objects are elements
of Z/nZ and whose arrows from object i to object j are the
triples (i,m, j) where j − i ∈ ϕn(m). Its composition rule
is given by (i,m1, j)(j,m2, k) = (i,m1m2, k).

The next result is a special instance of the derived cate-
gory theorem due to Tilson [28], but two modifications oc-
cur. First, Tilson’s original definition of the derived cate-
gory was different from ours, but this more complex defini-
tion is not required for relational morphisms onto a group.
Second, Tilson’s proof needs to be adapted to the context of
stamps. Altogether, we obtain the following result:

Theorem 4.4 A stamp ϕ is in J ∗ MOD if and only if there
exists a positive integer n such that Cn(ϕ) is in gJ.

We shall now improve Theorem 4.4 by giving an explicit
bound on the integer n. First, it was shown by Knast that
a category belongs to gJ if and only if, for each of its sub-
graphs of the form given in Figure 2, one has

(m1m2)
ω(m3m4)

ω = (m1m2)
ωm1m4(m3m4)

ω (1)



i j

(i,m1, j)

(i,m3, j)

(j,m2, i)

(j,m4, i)

Figure 2. A Knast subgraph.

We now state our new characterization.

Theorem 4.5 Let ϕ be a stamp of stability index s. Then ϕ
belongs to J ∗ MOD if and only if Cs(ϕ) is in gJ.

Proof. First, if Cs(ϕ) is in gJ, then ϕ belongs to J ∗ MOD
by Theorem 4.4.

Now assume that ϕ : A∗ → M belongs to J ∗ MOD.
Then, by Theorem 4.4, there exists a positive integer n
such that Cn(ϕ) is in gJ. We prove that Cs(ϕ) is in gJ
by showing that it satisfies Knast’s equation. Consider a
Knast subgraph of Cs(ϕ), with the notation in Figure 2. Set
k = j − i. There exist words u1, u2, u3, u4 in A∗ such that
ϕ(ui) = mi for 1 ≤ i ≤ 4 and

|u1| ≡ |u3| ≡ −|u2| ≡ −|u4| ≡ k mod s.

Since M is a finite monoid, there exists an integer ω such
that, for all x ∈ M , xω is idempotent. Further we can as-
sume that ω is greater than s. Now setting

{

v1 = (u1u2)
ωu1, v2 = u2(u1u2)

ω−1

v3 = (u3u4)
ωu3, v4 = u4(u3u4)

ω−1

we still have |v1| ≡ |v3| ≡ −|v2| ≡ −|v4| ≡ k mod s.
Further (ϕ(v1), ϕ(v2)) and (ϕ(v3), ϕ(v4)) are pairs of mu-
tually inverse elements of M . If k 6= 0, then for each i,
|vi| ≥ s and one can find an integer pi such that

{

|vi| = pis+ k , pi > 0, for i = 1, 3

|vi| = pis− k , pi > 1, for i = 2, 4

By definition of s, we have ϕ(As) = ϕ(A2s) and hence
{

ϕ(Apis+k) = ϕ(Anpis+k), for i = 1, 3

ϕ(Apis−k) = ϕ(Anpis−k), for i = 2, 4

Thus, there exist words x1, x2, x3, x4 in A∗ such that
ϕ(vi) = ϕ(xi) for 1 ≤ i ≤ 4 and

{

|xi| = npis+ k, for i = 1, 3

|xi| = npis− k, for i = 2, 4

Therefore, |x1| ≡ |x3| ≡ −|x2| ≡ −|x4| ≡ k mod n, and
Cn(ϕ) contains the subgraph pictured in Figure 3.

i j

(i, ϕ(x1), j)

(i, ϕ(x3), j)

(j, ϕ(x2), i)

(j, ϕ(x4), i)

Figure 3. A subgraph of Cn(ϕ).

Since Cn(ϕ) is in gJ, it satisfies Knast’s equation, that is,

ϕ(x1x2)
ωϕ(x3x4)

ω = ϕ(x1x2)
ωϕ(x1x4)ϕ(x3x4)

ω ,

which finally yields Equation (1). Therefore, Cs(ϕ) is in
gJ.

We now treat the case where k = 0. If u1 = u2 = u3 =
u4 = 1, Equation (1) holds trivially. Else, if u1 = u2 = 1
but u3u4 6= 1, we set x1 = x2 = 1 and since |v3|, |v4| ≥
s, we can take x3, x4 as above. Then, it is still true that
|x1| ≡ |x3| ≡ −|x2| ≡ −|x4| ≡ 0 mod n and that Cn(ϕ)
contains the subgraph pictured in Figure 3, which gives the
result. The argument is symmetrical if u3 = u4 = 1. In all
remaining cases, the words vi have length greater or equal
to s and the proof of the case k 6= 0 carries over.

Corollary 4.6 Given a regular language L, one can effec-
tively decide whether L is definable in BΣ1[<+ MOD].

Proof. It suffices to compute the syntactic stamp of L and
its stability index s and check whether the derived category
Cs(ϕ) satisfies Knast’s identity (1).

5. Summary

We proved the decidability of the two classes Σ1[< +
MOD] and BΣ1[< + MOD]. In algebraic terms, our results
can be summarized as follows:

< <+ MOD <+ REG

Σ1
J+ J+ ∗ MOD J+ ∗ LI ∗ MOD

BΣ1
J J ∗ MOD J ∗ LI ∗ MOD

...
FO A A ∗ MOD A ∗ MOD

However, there are subtle differences between these two
new results, as well as important features that distinguish



them from the older results listed in the fourth column of
the table. Indeed, given a stamp ϕ, one can decide whether
ϕ belongs to the varieties of the fourth column by verify-
ing that their stable (ordered) monoid satisfies certain condi-
tions. This is due to the properties that the varieties J+ ∗LI,
J ∗ LI and A satisfy the condition V ∗ LI = V. It was
observed both in [6] and in [12] that for varieties satisfying
this condition, the decidability of V and V∗MOD are equiv-
alent. The variety of ordered monoids J+ does not satisfy
this condition, but it is a local variety in the sense of Tilson
[28]: this still suffices to get the decidability of J+ ∗ MOD.
The hardest case is J ∗ MOD: the variety J is known to be
nonlocal and Knast identities are required to get the decid-
ability.

It would be interesting to obtain a purely model theoretic
proof of our results.
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[5] Zoltán Ésik. Extended temporal logic on finite words
and wreath products of monoids with distinguished
generators. In Masami et al. Ito, editor, Developments
in language theory. 6th international conference, DLT
2002, Kyoto, Japan, September 18-21, number 2450
in Lect. Notes Comp. Sci., pages 43–58, Berlin, 2002.
Springer.
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[17] Jean-Éric Pin and Pascal Weil. Polynomial closure
and unambiguous product. Theory Comput. Systems,
30:1–39, 1997.
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