FINITE SEMIGROUPS AND THE LOGICAL DESCRIPTION
OF REGULAR LANGUAGES

HOWARD STRAUBING
Computer Science Department, Boston College
Chestnut Hill, Massachusetts
USA 02467
E-mail:straubin@cs.be. edu

We survey the application of finite semigroups to the description of regular lan-
guages in first-order logic and generalized first-order logic. The emphasis is on
recent results, including formulas with a bounded number of variables, and con-
tacts with computational complexity and universal algebra.

1 Introduction

Formal languages can be defined by formulas of predicate logic and classified
according to the types of languages used to define them. This idea was first
applied to the languages recognized by finite automata by Biichi [3]. Biichi
used formulas of second-order logic. When first-order logic and various modest
generalizations thereof are used, finite semigroups become an important tool
in this classification.

The present paper is an informal survey of this algebraic approach to what
might be called the “descriptive theory of finite automata”. I have written
extensively about this subject in the monograph [10]. While the fundamentals
of the theory will be presented, most of the emphasis will be on research that
has appeared since the publication of [10].

2 Defining Regular Languages in Formal Logic
Let ¥ be a finite alphabet. Through most of this article our examples will

refer to the case where ¥ = {o,7}, but the results apply to general finite
alphabets. Consider the following first-order sentence:

VaVy((z <y AVz(z <z Vy < 2) = (Qor < Qry))-

*The author would like to acknowledge the financial support of Fundacao Calouste Gul-
benkian (FCG), Fundacgao para a Ciéncia e a Tecnologia (FCT), Faculdade de Ciéncias da
Universidade de Lisboa (FCUL) and Reitoria da Universidade do Porto.

Such a sentence is meant to be interpreted in words over the alphabet X.
The variables denote positions in the word (that is, integers between 1 and
the length of the word, inclusive), and the formula @, is interpreted to mean
“the letter in position z is ¢”.Thus the whole sentence says, in effect, that
any two consecutive positions contain different letters of ¥. Thus a word w
satisfies the sentence if the letters o and 7 strictly alternate within w. The
sentence consequently defines the language L consisting of all such words.

Observe that L is a regular language, and in fact is denoted by the regular
expression

(A+0)(ro) (A + 7).

It follows from Biichi’s results, and is not difficult to prove directly, that
any language defined by such a first-order sentence using the binary relation
< is a regular language. Let us pose the problem of determining whether a
given regular language can be so defined. For instance, is there any regular
language that is not first-order definable in this sense?

3 The McNaughton-Papert Theorem

We denote by FO[<] the family of languages over ¥ that are so definable. FO
means “first-order”, and the < in brackets means that this is the only relation
on positions—the only numerical predicate—that we use in our sentences.
(Note that x < y is equivalent to =(y < x), so we can define both < and = in
this logic.) We denote by M (L) the syntactic monoid of the language L and
by pr its syntactic morphism. The following theorem, due to McNaughton
and Papert [7], is a fundamental result.

Theorem 3.1 Let L C ¥*. L € FO[<] if and only if M(L) is finite and
aperiodic.

3.1 Using Model-theoretic Games

As a means of showing the reader the kinds of techniques that are used in this
subject, we sketch the proof of Theorem 3.1. We begin by proving that every
first-order definable language has an aperiodic syntactic monoid.

Let £ > 0. We define the following equivalence realtion on ¥*: u =5 v
if and only if u and v satisfy exactly the same sentences in which the depth
of nesting of the quantifiers is no more than k. Since there are only finitely
many inequivalent sentences of a given depth, = is an equivalence relation
on ¥* of finite index.

Let u,v € ¥*. We define the k-round Ehrenfeuchi-Fraifé game in (u,v)
as follows. Each player is equipped at the outset with k pebbles, labeled
Pi,--.pk- In the it round, Player I places his pebble labeled p; on a position
in one of the two words; Player II responds by placing her p; on a position
of the other word. Player II wins the game if, after £ rounds, the following
conditions are satisfied. First, whenever pebble p; is to the left of pebble p;
in one word, p; is to the left of p; in the other word. Second, the letter in the
position pebbled by p; in w is the same as the letter in the position pebbled
by p; in v. Player I wins if Player II does not win.

As an example, let u = 070 and v = To7o. Player II has a winning
strategy in the 1-round game in these two words, since the two words contain
the same set of letters. But Player I has a winning strategy in the 2-round
game: he can place p; on the initial 7 in v. Player II is forced to respond on
the second position of u. Player I then responds by playing ps on the first
position of u, and Player II now has no safe move in v.

Here is the principal result about these games:

Theorem 3.2 Let u,v € X%, k > 0. u = v if and only if Player II has a
winning strategy in the k-round game in (u,v).

As an illustration of this result, consider our previous example. Since
Player I has a winning strategy in the 2-round game in » and v, there must
be a sentence of quantifier depth 2 satisfied by one of these words and not the
other. Such a sentence says “the first letter is 77. We can write it as

3x(Qrz AVy(y >).

Given this theorem, it is not hard to prove the following facts: First: If
uy =g v1, and us = ve, then ujus =i vive. The proof is just the obser-
vation that winning strategies for Player II in the k-round games in (u1,v1)
and (ue,v2) can be combined to make a winning strategy for the game in
(uyu2,v1v2). Thus =, is a congruence of finite index on X*.

Second: For all v € £*, k > 1, v2* =, v?"~!. The winning strategy for
Player II in these two words is constructed by induction on k. The statement
is obvious for £ = 1. In the inductive step, Player I’s first move induces a
factorization of the word he plays in as wow', where ¢ € X. If |w| < |w'|
then Player II factors the other word as wow'”, and plays on the position
containing ¢. In subsequent rounds, if Player I plays in the prefix wo of either
word, Player II plays on the corresponding position of the other word. If
Player I plays in the factor w’ or w", the Player II responds according to her
winning strategy in the (k — 1)-round game in (w',w'"), which exists by the

inductive hypothesis. The symmetric argument is made in the case where
[w'| < Jw].

If L is defined by a sentence of quantifier depth k, then it is a union of
=j-classes, and thus M (L) is a homomorphic image of the quotient monoid
¥*/ =i . The two facts above imply that this quotient monoid is finite and
aperiodic, and thus M (L) is aperiodic. This gives us one direction of the
McNaughton-Papert theorem.

3.2 Using the Krohn-Rhodes Theorem

The converse direction of Theorem 3.1 is proved using the following conse-
quence of the Krohn-Rhodes Theorem: If M is aperiodic, then M divides an
iterated wreath product

Uo...oU,

where U is the transformation monoid generated by the automaton over ¥ =
{o,7}, with state set Q = {q1,¢2}, such that Qo = q1, QT = ¢o.

Let Ly, Ly be languages over X. Let < Ly, Lo > denote the set of all words
uv such that v € Ly, and every prefix uv’ of uv is in Ls. It is not hard to
show that if X is a transformation monoid, then every language recognized by
the wreath product U o X is a boolean combination of languages < L1, Ly >,
where L; and Ly are recognized by X. Secondly, if one has defining first-
order sentences for Ly and Lo, one can easily construct such a sentence for
< Ly, Ly > . Tt follows that if L is recognized by an aperiodic monoid, then
it is first-order definable.

3.8 Non-expressibility and Decidability

An immediate corollary of the McNaughton-Papert Theorem is that any lan-
guage whose syntactic monoid contains a nontrivial group is not in FO[<].
The simplest example is the language consisting of all words of even length.
More generally, we can effectively decide whether a given regular language
is in FO[<], since we can effectively compute its syntactic monoid and de-
termine whether the monoid is aperiodic. Further, given a finite aperiodic
monoid, we can effectively compute a Krohn-Rhodes decomposition and thus
effectively construct a defining first-order sentence for the language.

4 A Gallery of Complementary Results

We give here a summary (not intended to be exhaustive) of results similar to
the McNaughton-Papert Theorem. These concern variants of F'O[<] obtained

by changing the defining sentences along several different dimensions: The
kinds of quantifiers used, the numerical predicates allowed, and the number
of variables used.

4.1 First-order Sentences with Successor

We denote by FO[+1] the family of languages definable by first-order sen-
tences in which the successor relation y = x4+ 1 is permitted, but the ordering
relation z < y is not. The following fundamental result is due to Beauquier
and Pin [2].

Theorem 4.1 Let L € ¥* be a regular language. L € FO[+1] if and only if
M(L) is aperiodic, and

esfs'es’ f = es" fs'esf

for alle, f,s,5",s" € u, (X)) with e, f idempotent.

Example. Let us return to our original example L = (A+0)(70)* (A+7). We
have already seen that L is first-order definable, and thus, by Theorem 3.1,
M (L) is aperiodic. In fact M (L) = {1,0 = 0> = 72,0,7,07,70}, with o7
and 7o both idempotent. It follows that pr(3T) (that is, the non-identity
elements of M (L)) satisfy the identity in the statement of Theorem 4.1, and
consequently L € FO[+1]. In fact, a defining sentence is

VaVy(y =z + 1 = (Qox < Qry)).

Example. Theorem 4.1 allows us to give an algebraic proof of the purely
model-theoretic fact that < is not first-order definable in terms of successor.
Let ¥ = {p,0,7}, and consider the language p*op*7Tp*. One shows easily,
either by exhibiting a defining sentence or by computing the syntactic monoid,
that L € FO[<]. Let e = f = pr(p). (This is the identity of M(L).) Let
s = pr(o), s = pr(p), and s = ur(r). Then esfs’es” f = pr(o7r) and
es" fs'esf = pr(ro). The two elements are unequal, since o7 € L and 70 ¢ L.
Thus L ¢ FO[+1].

4.2 Modular Quantifiers

We introduce a new kind of quantifier, which we call a modular quantifier:
Let 0 < r < n. We interpret

3(7‘ mod n)x(b(w)

to mean “the number of positions z for which ¢(z) holds is congruent to r
modulo n”. For example,

3(0 mod 2)1,@0_1,

defines the set of strings over {0, 7} that contain an even number of occur-
rences of o.

We denote by M OD[<] the family of languages over ¥ definable by sen-
tences in which < is the only numerical predicate and only modular quantifiers
are used. (FO + MOD)[<] denotes the family of languages definable by sen-
tences in which ordinary quantifiers as well as modular quantifiers are allowed.
The following theorem is due to Straubing, Thérien and Thomas [13]:

Theorem 4.2 Let L C ¥* be a reqular language. L € MODI<] if and only
if M(L) is a solvable group. L € (FO + MOD)[<] if and only if every group
in M (L) is solvable.

4.8 Regular Numerical Predicates

Let us admit into our defining formulas both the ordering relation and the
predicates

z=r (modn),

where 0 < r < n. We call the numerical predicates that are definable in
terms of these regular numerical predicates, since any numerical predicate
outside this class can be used to define non-regular languages. We denote
by FO[Reg] the family of languages over ¥ definable by first-order sentences
over this base of predicates. (See [10].) The following is due to Barrington,
Compton, Straubing and Thérien [1]:

Theorem 4.3 Let L C ¥* be a regular language. L € FO[Reg] if and only
if for all k > 0, ur (Z*) contains no nontrivial groups.

Example. The set of strings over ¥ of even length is defined by the sentence
Ve(Vy(y <z) = (=0 (mod 2))),

and is thus in FO[Reg]. Observe that while M (L) is the group of order 2,
pr(X*) consists of a single element for each k. In contrast, the language
consisting of all strings over {o,7} with an even number of occurrences of
o has the same syntactic monoid. But in this case, for every k > 0, ur(ZF)
contains both elements of M (L), and so, by the theorem, is not in F'O[Reg].

In [1] it is shown that any regular language definable by a first-order
sentence with arbitrary non-regular numerical predicates is in FO[Reg]. This
theorem depends upon (and is, in fact, a reformulation of) a deep result from
circuit complexity.

4.4 Formulas with a Bounded Number of Variables
The language ¥*co¥*7%* is defined by the sentence

FzyF2(Qrz AQoy ANQrz ANz <yAy < zAVw(w <z Vy < w)).

Now observe that we can replace the variable w by z without changing the
meaning of the formula—the new occurrences of z are bound by the inner-
most quantification and have nothing to do with the original use of z. Thus,
by reusing variables, we have reduced the total number of variables in the
sentence to three.. Remarkably, this can always be done: every language in
FO[<] is definable by a sentence in which only three variables occur. (Im-
merman and Kozen [6].)

What happens if we allow only two variables? We denote by DA the
family of finite aperiodic monoids in which every regular 7-class is a subsemi-
group. (Schiitzenberger [9].) We denote by FO*[<] the family of languages
over X definable by k-variable first-order sentences over < . We use the nota-
tions MOD¥[<] and (FO + MOD)*[<] analogously. The following theorem
is a combination of results of Thérien and Wilke [14] and Pin and Weil [8]:
Theorem 4.4 Let L C X* be a regular language. The following are equiva-
lent:

(a) L is definable by a first-order sentence over < with only two variables.
(b) Both L and its complement are definable by Yo sentences over < .
(c) M(L) € DA.

What happens when we add modular quantifiers to the mix? We extend
to this case the notation used above, in which we denote by a superscript
the number of variables allowed in our sentences. The following is due to
Straubing and Thérien [12]:

Theorem 4.5 (a)

(FO + MOD)[<] = (FO + MOD)?[<]
(b)

MOD[<] = MOD?*[<]

(¢c) Let L C X* be a regular language. Then L € (FO+ MOD)?[<] if and only
if M(L) divides a wreath product M o G, where G is a finile solvable group
and M € DA.

(d) L € (FO + MOD)?[<] if and only if both L and its complement are
definable by ¥,-sentences over MODI[<]. (That is, sentences whose atomic
formulas are formulas quantified with modular quantifiers.)

Example. Let us look once again at our original example L = (A +
o)(ro)*(A + 7). pr(o) belongs to the unique nontrivial regular J-class J
of M(L), but 0> =0 ¢ J. Thus M(L) ¢ DA, and so L is not definable by a
first-order sentence with two variables. But L is two-variable definable if we
allow modular quantifiers. The sentence

Vz(Qrz ¢ 30 mod 2y(y < z)).

defines the set of strings (o7)*(o 4+ A). The disjunction of this with the analo-
gous sentence with o replaced by 7 defines L. The role played by the modular
quantifiers in this sentence is rather remarkable. There are no groups in M (L),
so we do not need modular counting at all to define the language. Nonethe-
less, by including them, we are able to define the language more economically
than would otherwise be possible.

Up until this point, all of our algebraic characterizations of languages
defined by first-order and generalized first-order sentences have been effective
in two senses: We have always had an algorithm to determine whether a given
regular language is in the class of languages under consideration, and we have
always had an algorithm to construct a defining sentence of the required type.
However, we know of no algorithm for determining if a given finite monoid
divides a wreath product of a monoid in DA and a solvable group. To see
where the difficulty lies, we give an alternative characterization of this family
of finite monoids. Let M be a finite monoid, and let J be a regular [J-class
of M. If M divides a wreath product of a finite group and a monoid in DA,
then it is possible to partition the set of L-classes of J in such a manner
that whenever s,t belong to the same block of the partition, and m € M,
then sm and tm are either both in J or both outside of .J, and if they are
both in J then they belong to the same block. We thus have a well-defined
partial action of M on the set of blocks of this partition. Furthermore, this
action is one-to-one. Now it turns out that M divides a wreath product of
a solvable group with a monoid in DA if and only if the partial one-to-one
action on the blocks of each J-class can be extended to a solvable permutation
group. In fact, the decidability of membership in this class of finite monoids
is equivalent to the decidability of the following question: Given a set F of
partial one-to-one maps on a finite set @), can F be extended to a solvable
group of permutations on a superset of @7 This question remains open.

5 Connections with Computational Complexity

We earlier mentioned some connections with circuit complexity. These are
discussed at length in [10]. Here we briefly discuss another contact with
computational complexity.

In computational complexity, we usually take the underlying alphabet ¥
to be {0,1}. Let C be a class of languages over this alphabet. We define

L € 3-C if and only if there exists a polynomial p, and a language K € C,
such that

ze Lo Iyexrlelizy e K).

We define classes V - C and @ - C analogously, replacing 3 in the definition by,
respectively, V and 30 mod 2,

For example, if P denotes the class of polynomial-time languages, then
3. P is the class NP, V- P is the class co-NP, and the closure of P under
these two operators is the polynomial-time hierarchy PH.

We also introduce a new computational model for language recognition:
Let p be a polynomial, let f : ¥* — M be a polynomial-time computable
function, where M is a finite monoid, and let X C M. We define L to be the
set of all strings w such that

I[I fweex,

|z|=p(lw])

where the product in M is taken in lexicographic order of the words z of
length p(Jw|). We say that L is polynomially recognized by the monoid M.

Observe that L € AP if and only if L is polynomially recognized by the
monoid {0, 1} with X = {0} as the set of accepting values, and that similarly,
L is in co-N'P if and only if it is so recognized with {1} as the set of accepting
values. It is possible to prove that L is recognized in this sense by a finite
monoid if and only if L is in PSPACE, and that L is recognized by a finite
aperiodic monoid if and only if L is in the polynomial-time hierarchy. (See,
for example, Hertrampf, et. al. [5])

The following theorem follows from work of Toda [15]:

Theorem 5.1
PHCA-V-aPNV-3-aP.

Observe the remarkable similarity between this result and our discussion
of formulas with two variables and modular quantifiers. Once again, we can
use modular counting to more efficiently express or recognize languages that
do not in any intrinsic way require modular counting. The form of the result

10

even suggests our alternative characterization, in terms of X5 formulas, of the
two-variable definable languages. We suspect that the underlying algebra is
the same; indeed, we conjecture that every language in the polynomial time
hierarchy is polynomially recognized by a wreath product of a monoid in DA
and the cyclic group of order 2.

6 Why Semigroups?

All the classes of regular languages considered in this article (and there are
other examples as well) were defined in terms of the kinds of logical formulas
used to express the languages, but were characterized in terms of the syntactic
monoids of the languages. Why are the answers to these logical questions
always algebraic? Here we outline a general explanation of the phenomenon,
based on a generalization of Eilenberg’s theorem connecting pseudovarieties
of finite semigroups and monoids with varieties of regular languages. ([4].)

Let C be a class of homomorphisms between finitely generated free
monoids such that (a) C is closed under composition, and (b) for each fi-
nite alphabet 3, the identity homomorphism on ¥* is in C. C is consequently
the class of morphisms of a category whose objects are the finitely generated
free monoids. Examples include: C,j;, the class of all homomorphisms between
finitely generated free monoids, Cye, the class of non-erasing homomorphisms
(that is, homomorphisms ¢ : ¥* — I'* such that ¢(X1) C I'T), and Cyy, the
class of length-multiplying homomorphisms—those for which there exists k& > 0
such that ¢(¥) C I'*.

Given such a class C, we define a C-pseudovariety of homomorphisms to
be a family V of surjective homomorphisms ¢ : ¥* — M, where M is a finite
monoid, with the following properties:

(a) Let ¢ : ¥* - M bein V, f : I'* — ¥* in C, and suppose there is a
homomorphism « from Im(¢ o f) onto a finite monoid N. Then co o f :
' - Nisin V.

(b) If ¢ : ¥* — M and ¢ : ¥* — N belong to V, then so does ¢ x ¢ : ¥* —
Im(¢ x) C M x N.

In this formalism, the C,; pseudovarieties are in essence identical to pseu-
dovarieties of finite monoids, and the C,.-pseudovarieties to the pseudovari-
eties of finite semigroups. Given such a C-pseudovariety V, we define the
corresponding C-variety of languages, which associates to each finite alphabet
Y the family of regular languages L such that the syntactic morphism of L
is in V. As in the original theory of Eilenberg, the correspondence between
C-pseudovarieties and the associated varieties of languages is one-to-one.

The following result is due to the author [11]: Let Q be a class of quanti-

11

fiers, either FO, MOD, or FO + MOD. Let k,d > 0, and let A/ be one of the
following classes of numerical predicates: equality, equality with successor,
ordering, ordering with successor, or all regular numerical predicates. Let

Olk,d, N]

associate to each finite alphabet ¥ the family of languages over ¥* defined
by sentences using the given class of quantifiers, with quantifier depth d, no
more than k variables, and numerical predicates in N'. Then
Theorem 6.1 Q[k,d,N] is a C-variety of languages, where C = Coy if N is
equality or ordering, C = Cn. if N is one of the classes containing successor,
and C = Cppy, if N is the class of regular numerical predicates.

It follows that membership in each of these logically defined classes de-
pends only on the syntactic morphism of the language.

References

[1] D. Mix Barrington, K. Compton, H. Straubing, and D. Thérien, “Regular
Languages in NC1”, J. Comp. Syst. Sci. 44 (1992) 478-499.

[2] D. Beauquier and J. E. Pin, “Factors of Words”, Proc. 16th ICALP,
Springer Lecture Notes in Computer Science 372 (1989) 63-79.

[3] J. R. Biichi,“Weak second-order arithmetic and finite automata”, Zeit.
Math. Logik. Grund. Math. 6 (1960) 66-92.

[4] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic
Press, New York, 1976.

[5] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wagner,
“On the Power of Polynomial-Time Bit Reductions”, Proc. 8th IEEE
Conference on Structure in Complexity Theory (1993) 200-207.

[6] N. Immerman and D. Kozen, “Definability with a Bounded Number of
Bound Variables”, Information and Computation, 83, 121-139 (1989).

[7] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press,
Cambridge, Massachusetts, 1971.

[8] J.-E. Pin et P. Weil, “Polynomial closure and unambiguous product”,
Theory Comput. Systems 30, 1-39, (1997).

[9] M. P. Schiitzenberger, “Sur le Produit de Concatenation Non-ambigu”,
Semigroup Forum 13 (1976), 47-76.

[10] H. Straubing, Finite Automata, Formal Logic and Circuit Complexity,
Birkh&user, Boston, 1994.

[11] H. Straubing, “On the logical characterization of regular languages” Un-
der review.

12

[12] H. Straubing and D. Thérien, “Regular languages defined by generalized
first-order formulas with a bounded number of bound variables”, Proc.
2001 STACS.

[13] H. Straubing, D. Thérien, and W. Thomas, “Regular Languages Defined
by Generalized Quantifiers”, Information and Computation 118 289-301
(1995).

[14] D. Thérien and T. Wilke, “Over Words, Two Variables are as Powerful
as One Quantifier Alternation”, Proc. 80th ACM Symposium on Theory
of Computing, 256-263 (1988).

[15] S. Toda, “PP is as Hard as the Polynomial-Time Hierarchy”, STAM J.
Computing 20 (1991) 865-877.

13

