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1 Introduction

Rhodes and Tilson [5] introduced the bilateral semidirect product of monoids,
and the related block product, and used them to develop the notion of the kernel
of a homomorphism of monoids. The underlying idea behind such products is
quite old; its precursors can be found in the “triple products” of Eilenberg [1],
in the work of Schiitzenberger on the Schiitzenberger product [6] and on se-
quential bimachines [7], and in Krohn, Mateosian and Rhodes [2] on sequential
bimachines and semigroup decompositions. In [5] and, implicitly, in [2], we find
the following bilateral version of the Krohn-Rhodes theorem: Every finite monoid
M divides an iterated bilateral semidirect product

(M, * % - - - (M3 * x(Mg * xM7)) - -),

where each M; is either a semilattice or a simple group that divides M. In partic-
ular, if M is aperiodic, then M divides an iterated product of semilattices. While
bilateral products are somewhat unwieldy to work with, they result in decompo-
sitions with simpler factors than are possible with unilateral products, making
them especially suitable for some applications. For example, Straubing [11] ap-
plies the bilateral Krohn-Rhodes theorem to find logical characterizations of
classes of regular languages.

In the present paper we consider what happens when we bracket the iterated
bilateral semidirect product in the opposite direction. We find that the monoids
that divide an iterated bilateral semidirect product

(-« ((My % *My) % xM3) % % - - - x % M),)

of semilattices are precisely the members of the pseudovariety DA, and those
that divide an iterated product of groups and semilattices are precisely the mem-
bers of DA xG. This constitutes a kind of inside-out Krohn-Rhodes theorem. We
also give an application of our decomposition result: A new, transparent proof of
theorems of Thérien, Wilke and Straubing [13, 10] on the definability of regular
languages by generalized first-order sentences with two variables.

2 Algebraic Preliminaries

We suppose that the reader is familiar with the fundamental notions concern-
ing the connections between semigroups and automata: division of monoids,
recognition of regular languages by finite monoids, and the definition and basic
properties of the syntactic monoid. We refer the reader to Chapter 1 of Pin [3]
for an introduction to this material.



2.1 One-sided and bilateral products of monoids

Let M and N be finite monoids. Following a convention introduced by Eilenberg,
we will write the product in M additively. Thus we write the identity of M as 0,
and the k' power of m € M as k- m. This is done to make the notation more
readable, and not to suggest that M is commutative. A left action of N on M
associates to each pair (n,m) € N x M an element nm of M, subject to the
following laws:

n(m +m') = nm + nm'

(nn"Ym = n(n'm)
n0=0
Ilm=m

for all m,m' € M, n,n’ € N. Given such a left action we define the semidirect
product M = N with respect to this left action as the monoid whose underlying
set is M x N with multiplication given by

(m,n)(m',n') = (m +nm',nn’),

for all m,m' € M, n,n’ € N. It is straightforward to verify that this multipli-
cation is associative, and that (0, 1) is the identity for this multiplication; thus
M x N is indeed a monoid. There may be many different left actions of M on
N, giving rise to nonisomorphic semidirect products M * N.

We define a right action of N on M analogously, and define the reverse
semidirect product N x,. M with respect to this action as the monoid structure
on N x M with multiplication given by

(n,m)(n',m') = (nn/,mn' +m').

Suppose we have both a left and a right action of N on M, and that these
two actions satisfy
(nm)n' = n(mn'),

for all m € M, n,n’ € N. We can then define another monoid structure on
M x N with multiplication given by

(m,n)(m',n') = (mn' + nm',nn').

Once again, it is straightforward to verify that this is an associative multipli-
cation with identity (0,1). We call the resulting monoid a bilateral semidirect
product and denote it M * xN. Observe that every ordinary and reverse semidi-
rect product is a special instance of the bilateral semidirect product, since we
can define one of the two actions to be the identity map on M for all n € N.

We now describe two related products. Once again, let M and N be finite
monoids. We return to using the standard multiplicative notation for the product
in M. The wreath product M o N is a monoid structure on MY x N, with
multiplication given by

(F,n)(F',n') = (G,nn'),



where for all n" € N,
G(n'") = F(n'")F'(n''n).

The block product MON is a monoid structure on MV XN x N, with multiplica-
tion given by
(Fa n)(Flanl) = (Gannl)a

where for all (n1,n2) € N x N,
G(ni,n2) = F(ny,n'n2)F'(n1n,ns).

The following proposition summarizes the essential facts about these prod-
ucts. The proofs (which are all quite simple) can be found in Eilenberg [1] or in
Rhodes and Tilson [5]. In what follows, if M is a finite monoid, then M" denotes
the reversed monoid.

Propositionl. Let M, N be finite monoids.

(a) If M and N are groups, then every semidirect product M = N is a group.
(b) If M x xN is a bilateral semidirect product with N a group, then M % xN is
isomorphic to a semidirect product M x N.

(¢) Given a bilateral semidirect product M xxN there exist a left action of N on
M and a right action of N on the resulting semidirect product M = N such that
M * xN is isomorphic to a submonoid of N x,. (M x N).

(d) For every bilateral semidirect product M % xN there is a bilateral semidirect
product M™ « xN" such that (M *xN)" is isomorphic to M" x *N".

(e) M o N is isomorphic to a semidirect product M' « N, where M’ is the direct
product of |N| copies of M.

(f) Every semidirect product M x N divides M o N.

(9) MON is isomorphic to a bilateral semidirect product M" x «xN, where M"
denotes the direct product of |N|*> copies of M.

(h) Every bilateral semidirect product M x «N divides MON.

(’t)If M1 < My, N1 < Na, then My o Ny < My o Ny, and M;0ON; < M>ON,.

(5) Let 1 denote the trivial monoid. Then M o1, 1o M, MO1, and 1OM are all
isomorphic to M.

(k) M o N < MON.

2.2 Product pseudovarieties

A pseudovariety of finite monoids is a collection of finite monoids that contains
all divisors of its members, and the direct products of any two of its members.
We use standard names for certain important pseudovarieties: J; denotes the
pseudovariety of finite semilattices (i.e., idempotent and commutative monoids),
R the pseudovariety of R-trivial monoids, G the pseudovariety of finite groups,
and 1 the pseudovariety whose only member is the trivial monoid. Another
important pseudovariety, denoted DA, will be discussed at length below.

If V and W are pseudovarieties, then V * W denotes the family of finite
monoids that divide a semidirect product M x N, where M € V and N € W.
We define V %, W analogously. We denote by VOW the family of finite monoids



that divide a bilateral semidirect product M **xN, with M € V and N € W. By
Proposition 1, V x« W is also the family of divisors of wreath products M o N,
with M € V and N € W, and similarly VOW is the family of divisors of block
products MON. VW, V x. W, and VOW are themselves all pseudovarieties.

If V is a pseudovariety, we set V" = {M" : M € V}. This, too, is a pseu-
dovariety.

The following proposition summarizes properties of these product varieties.
Most of these are direct consequences of Proposition 1. See [1] or [5] for the
proofs.

Proposition 2. Let U, V,W be pseudovarieties of finite monoids.
(a) If V,W C G, then VxW C G.

(b) If W C G, then VOW =V xW.

(¢) VOW C W %, (V x W).

(d) VIOW™ = (VOW)".

(e)JUxV)«xW=Ux(VxW).

Let C be a collection of finite monoids, and let V be the smallest pseudovari-
ety containing C. We denote by pe(C) the union of the pseudovarieties V, V x 'V,
V %V xV, etc. Note that we are implicitly using part (e) of the above propo-
sition in this definition. pe(C) is the smallest pseudovariety containing C that is
closed under *; pe stands for “product closure”.

For pseudovarieties U, V, W, we have

(UOV)OW C UO(VOW),

however the converse inclusion is in general false. Because of this non-associativity,
we must be careful about how we define iterated product varieties for the block
product. We denote by wb*(V) the pseudovariety

(---((vav)ov)o.-.ov),

with k occurrences of V. We denote by wbpc(V) the union of the wb*(V) over
all k > 0. We also denote (not without some abuse of notation) by wbpe(VUW)
the union of all the pseudovarieties

[Vl, e ,Vk] = ( . ((VIDV2)DV3)D e DVk),

where for each i, V; = V or V; = W. It may not be obvious that this is a
pseudovariety. To see that it is, observe that parts (i) and (j) of Proposition 1
can be used to show that the pseudovarieties [Vy,..., V] and [Wy..., W]
are both contained in the pseudovariety [V1,..., Vg, Wi,..., W,,], and thus
wbpc(V U W) contains the direct product of any two of its members. wbpc
stands for “weak block product closure”.



2.3 The pseudovariety DA

If M is a finite monoid and m € M, then we denote by m® the unique power
of m that is idempotent. DA consists of all finite monoids M such that for all
z,y,2 € M,

(zyz)“y(zyz)” = (wy2)“.

It follows directly from this characterization that DA is a pseudovariety. If we
take x = z = 1, we find that every monoid in DA satisfies the identity

vy =y,

and thus is aperiodic (i.e., contains no nontrivial groups). DA was introduced
by Schiitzenberger [8].

We give an equivalent characterization of DA in terms of congruences on
finitely generated free monoids. This is due to Thérien and Wilke [13]. Let X be
a finite alphabet, with | X| = n. We define a family of equivalence relations ~, s,
k >0, on X* as follows. If either n = 0 or k = 0, ~,; is the trivial congruence
that identifies all words of X*. Now suppose n and k are both positive. We will
define ~,, ;, inductively: If w € X* then we denote by c(w) the set of letters
appearing in w. If o € ¢(w), then w has a unique factorization

W = WooWy,
where o ¢ c¢(wp). We define

I7* (w) = ([woln—1,k, [wilnk—1),

where [v],, denotes the ~, ,-equivalence class of v. Observe that the definition
above makes sense, because wy is a word over the (n—1)-letter alphabet X' —{c}.
Similarly, there is a unique factorization

! !
W = Woowy,

such that o ¢ c(w}). We set

ro 't (w) = ([wpln—1k; (W) ]n,5-1)-

We now set, for v,w € X*, v ~p; w if and only if ¢(v) = c¢(w), and for all
o € c¢(v),

Ik () = 1k (), i (v) = ik (w).

It is easy to verify that every ~, ; is a congruence of finite index on X*. Thérien
and Wilke show that the quotient monoids X*/ ~,  are all in DA, and that
every monoid in DA is a homomorphic image of some X*/ ~y, 1 .



3 The Decomposition Theorem

Our main result is:
Theorem 3. Let H be any pseudovariety of finite groups. Then
wbpe(J1 UH) = DA * pc(H).
In particular, taking H = 1, we have
wbpce(J1) = DA.

We give the proof in the next two subsections.

3.1 Proof that wbpc(J1 U H) C DA * pc(H)
We first show:

Lemma4. DAOJ; C DA.

Proof. By Proposition 2,
DAOJ; C J; %, (DA xJy).

Since DA is closed under reversal, it suffices, again by applying Proposition 2 to
prove the lemma with O replaced by *. We show this using the defining identity
for DA:

(zy2)“y(eyz)” = (zyz)*.
That is, we will show that if M is a monoid satisfying this identity, and NV € Jy,
then any semidirect product M =N satisfies the same identity. Let xz,y,z € M *N,
with
T = (21,22),y = (y1,92), 2 = (21, 22)-

Since M and N are both aperiodic, there exists & > 0 such that

for all u € M % xN, and (using additive notation in M)
kE-v=(k+1)-v
for all v € M. Since N € J; we have
($2y2Z2)2 = T2Y222T2 = T2Y222Y2 = T2Y22222 = T2Y222,

so that

(zyz)” = (zyz)™*

= (z1 + Tay1 + Tay221 + Tay222 - k- (1 + y1 + 21), Taya22).



Thus
(zy2)“y(zy2z)” = (z1+22y1 +22y221 +X2y222-(k-(z1+y1+21)+y1+(k+1)-(21+y1+21)), Z2y222).
Since M satisfies the identity for DA,
k-(zityr+z)+y+(k+1)- (@1 +y1+21) =k- (21 +y1 +21),

from which it follows that

(zy2)“y(zyz)” = (zyz)*.
To complete the proof that wbpe(J; UH) C DA xpc(H), it is enough to show
(DA % pc(H))OH C DA * pc(H),
and
(DA xpc(H))OJ; C DA * pc(H).
The first inclusion follows from Proposition 2.
(DA xpc(H))OH = (DA xpc(H)) « H

(
= DA x (pc(H) « H)
= DA x pc(H).

For the second, we argue as in the proof of Lemma 4: It is enough to show this

inclusion when O is replaced by *. We now use the following two facts, first
proved in Stiffler [9]:

R = pe(Jy),
and
HxJ; CRx+xH,
for any pseudovariety of groups H. This gives
(DA xpc(H)) *J; = DA * (pc(H) % J1)
C DA « (R * pc(H))

= (DA * pc(J1)) * pc(H)
C DA * pc(H),

by Proposition 2 and Lemma 4.



3.2 Proof that DA * pc(H) C wbpe(J; U H).

We first note that it is sufficient to show DA C wbpc(J1). For suppose that this
is true. If M € DA x pc(H) we have

M<No(G
for some N € DA, G € H. Our assumption and Proposition 1 then give:

M <NoHpo---0 H;
=< ( .. ((NDHk)DHk_l)D cee DHl)
< ( .. ((V}DVrfl)Dvrfz)D e DV1)DH1¢D e DHl),
where Hy,...,H, € Hyand V4,...,V, € J;. Thus M € wbpe(J; U H).

To prove DA C wbpc(J1), we use the generating family of congruences for
DA, defined in 2.3. We thus need to show that for every finite alphabet X', with
|X| =n, and every k > 0, £*/ ~, € wbpe(J1). This is trivially true if n = 0 or
k =0. If n and k are both positive, then we claim

Z*) ~p k€ wb™ RN (3.
We prove this by induction on n + k — 1. It is enough to show that for each
w € X* and each o € (w), the languages
Ly ={ve X :cv)
Ly = {v € Z* : 1™*(v) = 1M (w)},
Ly ={ve Z* :rph(v) = rpt(w)},
(

are all recognized by monoids in wbn+F—1
boolean combination of these languages.

L, is obviously recognized by the monoid whose elements are the subsets of
Y, with union as multiplication—this is in J;. We now need only show that Lo
is recognized by a monoid in wb™T*~1(J;), since the result for L3 follows from
the reversal closure of the block product of pseudovarieties (Proposition 2). We
will now show that L, is recognized by the monoid

M=((2-A{o})") ~n-1p x X/ ~pg_1)oUi,

which, coupled with the inductive hypothesis, gives the desired result. To show
recognition, we define a map ¢ : X' — M as follows: We set ¢(o) = (G,,0), and
¢(1) = (Fr, 1) for T # o, where

F-(1) = ([rla-1,6, 1),
Go(1) =(1,1),
F(0) = (1, [7]nk-1),
Go(0) = (1, [0]n,k-1)-

J1), since each class of ~, ; is a



The map ¢ extends to a unique homomophism from X* into M. Let w € X*,
and let ¢1(w) and ¢(w) denote, respectively, the left and right co-ordinates of
¢(w). Tt follows readily that if w € X* and o ¢ c(w), then ¢o(w) = 1, and
(1 (w))(1) = ([W]p=1,k,1). Otherwise, ¢2(w) =0, and

(¢1(w))(1) = ([woln—1,ks [W1]n,k—1),

where w = woow is the unique factorization with o ¢ c(wg).Thus Ly = ¢~ 1(X),
where

X ={(G,0): G(1) = ([wo]n—1,k; [W1]nk—1)}-
Thus M recognizes Lo, as required.

4 An Application to Logic

4.1 Regular languages and generalized first-order logic

Regular languages can be defined by sentences of first-order logic, using the
following scheme: Variables in a sentence denote positions in a word over the
underlying input alphabet X. There are two kinds of atomic formulas: z < y,
which is interpreted to mean that position x is to the left of position y, and Q,x,
which means that the letter in position z is 0. A sentence such as

Jz(Vy(-y < z) A Qo)

is satisfied by all words having at least one letter, and whose first letter is o.
Thus the sentence defines the regular language o X, consisting of all the words
that satisfy the sentence. We will allow our sentences to contain, in addition
to the usual existential and universal quantifiers, modular quantifiers 3" ™47,
where 0 < r < n. A formula of the form

= mod nm(ﬁ(m)

is interpreted to mean that the number of positions z for which ¢(z) holds is
congruent to r modulo 7.

See Straubing [11] for an extensive treatment of this method of defining for-
mal languages with formulas of logic. In practice, it has been found that classes
of languages defined by “natural”’-looking boolean-closed classes of sentences
can usually be characterized in terms of the syntactic morphisms and syntactic
monoids of the languages.

In this section we apply Theorem 3 to give a new proof of the following result,
due to Thérien and Wilke [13] for the case n = 1 (no modular quantifiers)
and to Straubing and Thérien [10] for the general case. Let G&,C”Bn denote the
pseudovariety of finite abelian groups whose exponents divide n.

Theorem 5. Let X' be a finite alphabet, and let n > 1. A language L C X* is
definable by a sentence that uses only two variables, ordinary quantifiers and
modular quantifiers of modulus n if and only if M (L) € DA *pc(Gg,lzn).

In the case n = 1, the modular quantifier is superfluous, so the theorem says
that L is definable by a two-variable sentence if and only if M (L) € DA.



4.2 Languages recognized by bilateral semidirect products

Let X be a finite alphabet, M a finite monoid, and « : X* — M a homomor-
phism. We set I' = M x X' x M, and define a length-preserving map 7, : X* — '™
by

Ta(01+ 0n) =71 o,

where ¢; € ¥ and
vi = (a(o1 -+ 05-1),04, (0441 -+ - 0y)) € T,

for i = 1,...,n. (In the above equation, we take the left component of v; and
the right component of v, to be the identity of M.) The following facts about
homomorphisms from finitely-generated free monoids into bilateral semidirect
products are from Thérien [12], where they are stated in terms of congruences
on finitely generated free monoids.

Lemma6. (a) Let ¥, M,I" be as above. Let N be a finite monoid, and let
B X* = N xxM be a homomorphism into a bilateral semidirect product. Let
(n,m) € N x«M. Then there is a homomorphism « : X* — M and a language
L C I'* recognized by N such that

B (m) =a~ (m) N7 (L)

(b) Let a, ¥, M, I" be as above. Let L C I'* be a regular language recognized by
a finite monoid N. Then 7;1(L) is recognized by NOM.

4.3 Construction of two-variable sentences

We now prove Theorem 5. We begin by showing that every language whose

syntactic monoid is in DA x pc(GSZ}n) is definable by a two-variable sentence of

the required kind. Let L C X*, with M(L) € DA x pc(G"),). By Theorem 3,
there exists a homomorphism

where each M; is either a semilattice or an abelian group with exponent dividing
n, such that L = ¢~1(X) for some X C N. We construct a defining sentence for
L by induction on k. First, suppose that M} is a semilattice. By Lemma 6, L
is a boolean combination of languages of the form a~1(m) and 7, (K), where
a 1 X* = My is a homomorphism, m € My, and K C (Mp x X x My)*
is recognized by (--- ((M10OM>)0OMs3)0---OMj_1. We need to show that both
a~!(m) and 7, (K) are two-variable definable.

Observe that the value of a(w) depends only on c¢(w). Thus if X' C ¥
we can write a(X') to denote the image under a of any w such that c(w) =
X', Consequently a~1(m) is defined by a boolean combination of one-variable
sentences of the form JzQ,x.



By the inductive hypothesis, K is defined by a two-variable sentence over
I' = M, x X x M. We obtain a sentence for 7, ' (K) by replacing each subformula
Q(m1,0,ms)T Of the sentence by a disjunction of formulas that say ‘the letter in
position z is o, the set of letters in positions to the left of = is Xy, and the set
of letters in positions to the right of x is X5’, where the disjunction is over all
subsets X1, Xy of X such that a(X;) = m; and a(Xy) = ma. Such a formula is

Qoz AVy(y <z — \/ Qrv)

TEXL

AN Ty <zAQry)
TEX

Ay >z = \/ Q)

TEY,

AN >z Q).
TEY S

The resulting defining sentence for 7, (K) still uses only two variables, since

the new variable y that we introduced is used only within the scopes of the
new quantifiers; thus we are able to re-use a variable of the same name already
occurring in the defining sentence for K.

We proceed very similarly in the case where M, € GEZZn In this case, the
value of a homomorphism « : X* — M}, on a word w is determined by the
number of times, modulo n, that each letter 7 € X appears in w; that is, by
a |X|-tuple (n,),ex of elements of Z,. Thus a~!(m) is defined by a boolean
combination of one-variable sentences of the form 3" ™°47zQ, z. We obtain a
two-variable sentence for 7,1 (K) from a defining sentence for K upon replacing
each Q(m,,0,m.) by a disjunction of sentences of the form

Qoz A [\ 3 ™4y <2 A Qry)
TeX

A /\ 3n mod "y <zxzAQry)
TEX

for some | X|-tuples (ny)sex and (n!)sex.

4.4 The syntactic monoid of two-variable definable languages

We complete the proof of Theorem 5 by showing that if L C X* is definable
by a two-variable sentence 6 all of whose modular quantifiers are of modulus n,
then M (L) € DA x pc(Gggzn). We first describe a kind of normal form for such
sentences. Let Q be an innermost quantifier symbol in 8; that is, a quantifier
symbol such that no other quantifier appears within its scope. We may assume
that Q is either an ordinary existential quantifer or a modular quantifier, since
the universal quantifier can be defined in terms of the existential quantifier.
Let us suppose that the quantifier Q quantifies the variable z. We can write



the subformula appearing after the quantifier as the disjunction of mutually
exclusive formulas of the form

TRY A Qo A Qry,

where R is one of <, >, or = . We can then rewrite the entire quantified sub-
formula as a boolean combination of formulas of the form

Qz(zRy A Qo A Qry)-

This is clear if Q is existential, since the existential quantifier commutes with
disjunction. If Q is modular, then we note that

grmedng (g, v---v6,),

where the 6; are mutually exclusive, is equivalent to

s
\/ /\ s mod nmeh
Jj=1

where the disjunction is over all s-tuples (ry,...,7rs) of elements of Z, whose
sum is r. Now note that we can move the atomic formula @,y from within the
scope of the quantifer; that is,

Qw(mRy AQsz A Q‘ry)

is equivalent to
Qry A Qx(zRy A Q. ),

unless Q is the modular quantifier 3° ™47 in which case the formula is equiv-
alent to

—Qry Vv —El:c(a:Ry A Qam)
V(Qry A ™ e (xRy A Qo).

Finally, we note that Qz(z = y A Q,z) is equivalent to Q,y if Q is either an
existential quantifier or the modular quantifier 3' ™°d " and is never satisfied
otherwise. We may thus assume that in 8, every innermost quantified subformula
has the form

Q.’L‘(:C <yA QO'-'E)
or

Qz(z >y A Qo).

This is our normal form.

We prove M (L) € DA x pc(Gg,”zn) by induction on the depth of nesting of the
quantifiers and by the number of innermost quantifiers at this depth. At each
step we will either decrease the number of quantifiers at the maximal depth, or
decrease the depth. The base case is depth 0, in which the sentence simply says
TRUE or FALSE, and M (L) is the trivial monoid. Let us accordingly pick a
quantifier at maximal depth. If the quantifier is an existential quantifier, then



we set M to be the quotient of X* by the congruence that identifies words v and
w if and only if ¢(v) = ¢(w). If the quantifier is modular, then M is the quotient
of X* by the congruence that identifies v and w if and only if, for all ¢ € X,

[v|s = |w|y, (mod n),

where |v|, denotes the number of occurrences of ¢ in v. In either case we let
a : X* — M denote the projection onto the quotient by the congruence. In the
former case, elements of M can be identified with subsets of X, and M € J;. In
the latter case, elements of M are | X|-tuples of elements of Z,,, and M € GEZ}n

We now transform 6 into a sentence over I' = M x X' x M. If the selected

innermost quantified formula is
Jz(z <y AQ,x),

we replace it by
V Q(Zl,ﬂzb)x’

where the disjunction is over all Xy C X such that ¢ € X, and all 7 € ¥,
X5 C X. In case the selected quantified subformula is

rmodng(p <y AQot),
we replace it by the disjunction of all

Q((n)res,m(n))res) T

such that n, = r. We replace all other subformulas of 8 of the form @,z by the
disjunction of all Q(x, , 5,)z, where Xy, ¥y C X. We proceed analogously if the
quantified subformula contains z > y instead of z < y.

The result is a sentence ) over I" that has either smaller depth than 8, or fewer
quantifiers at maximal depth. By the inductive hypothesis, the language K C I'*
defined by 7 has its syntactic monoid in DA xpc(Gn),). We have L = 75! (K), so

M(L) < M(K)OM, by Lemma 6. Thus by Theorem 3, M(L) € DA # pc(G'2),).

4.5 Concluding remarks

If we take the union over all moduli n > 0, we obtain Theorem 5 in the form
originally stated in [10]: A language is definable by a two-variable sentence if
and only if it belongs to DA * G, where G, is the pseudovariety of finite
solvable groups. In [10] we discuss the open decision problem for DA x G-

It is interesting to compare our proof of Theorem 5 with the logical applica-
tions of the bilateral Krohn-Rhodes theorem in Straubing [11]. In the latter, we
build up our logical formulas by quantifying over existing formulas. In the present
paper, however, we construct formulas by replacing atomic formulas with quan-
tifier formulas of depth 1, and that’s why we need the inside-out Krohn-Rhodes
theorem!
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