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Abstract. There are many examples in the research literature of fami-
lies of regular languages defined by purely model-theoretic means (that
is, in terms of the kinds of formulas of predicate logic used to define
them) that can be characterized algebraically (that is, in terms of the
syntactic monoids or syntactic morphisms of the languages). In fact the
existence of such algebraic characterizations appears to be the rule. The
present paper gives an explanation of the phenomenon: A generalization
of Eilenberg’s variety theorem is proved, and then applied to logic. We
find that a very wide assortment of families of regular languages de-
fined in model-theoretic terms form varieties in this new sense,and that
consequently membership in the family depends only on the syntactic
morphism of the language.

1 Introduction: Why Logic Leads to Algebra

There is by now an extensive literature on what might be called “descriptive
automata theory”, in which families of regular languages are classified according
to the kinds of logical formulas used to define them. This research began with
the work of Biichi on the connection between finite automata and weak second-
order arithmetic [4], and continued with results of McNaughton and Papert on
first-order definable languages [6], Thomas [14] on the X}-hierarchy, Straubing,
Thérien and Thomas [12] on modular quantifiers, and others. Straubing [10]
presents a large assortment of such results. More recent work has concentrated
on descriptions in temporal logic and the expressive power of formulas with a
bounded number of variables (see Thérien and Wilke [13] and Straubing and
Thérien [11]).

One intriguing feature of these results is that in almost every case, the fam-
ily of languages in question can be characterized algebraically, in terms of the
syntactic monoids or syntactic morphisms of the members the family. It is not
particularly obvious why this should be, and the discovery of such an algebraic
characterization always comes as something of a pleasant surprise.

The present paper gives a detailed explanation of this phenomenon. Section
2 presents a generalization of the notion of a pseudovariety of finite monoids that
includes as special cases both the M-varieties and S-varieties of Eilenberg’s the-
ory [5]. We prove in this setting a generalization of Eilenberg’s theorem giving the



correspondence between pseudovarieties of monoids and varieties of languages.
In Section 3, we apply these ideas to the logical definitions of regular languages.
We are able, in this way, to account for the algebraic characterizations of all
of the families cited above, and to show that many other such families of lan-
guages admit characterizations in terms of the syntactic morphism, even though
we do not, at present, possess an explicit description of the underlying class of
homomorphisms.

In Section 4 we consider an assortment of related questions concerning locally
testable languages, regular languages in circuit complexity classes, and possible
extensions of our general theory.

Because of length limitations, we only give a broad outline of our argument.
The complete proofs are, for the most part, fairly straightforward, but— espe-
cially in Section 3—rather long and repetitive. The full paper will contain all
the details.

We assume that the reader is familiar with the fundamentals of the alge-
braic approach to finite automata, particularly with the notions of the syntactic
monoid M (L) and the syntactic morphism py, of a regular language L. See Pin [7]
for the necessary background.

2 Pseudovarieties of Homomorphisms

2.1 Categories of homomorphisms between free monoids

We consider classes C of homomorphisms between finitely-generated free monoids
with the following properties:

(i) Let X, I, and A be finite alphabets. If f : ¥* — I'™* and g : ['™* — A* are in
C,thengo f:X* - A*isin C.

(ii) For each finite alphabet X, the identity homomorphism 1g. : X* — X*
belongs to C.

Such classes form the morphism classes of categories whose objects are all the
finitely-generated free monoids. We will abuse terminology slightly by referring
to the classes C themselves as categories. We are most interested in the following
three categories:

(i) Caur, which consists of all homomorphisms between finitely-generated free
monoids.

(ii) Cpe, which consists of all nonerasing homomorphisms; that is, homomor-
phisms f: X* — I'* such that f(X) C I'*.

(iii) Cim, which consists of all the length-multiplying homomorphisms; that is,
homomorphisms f : ¥* — I'* for which there exists k£ > 0 with f(X) C I'*.

2.2 Pseudovarieties of homomorphisms onto finite monoids

Let C be a category of homomorphisms between free monoids, as described above.
A collection V of homomorphisms ¢ : X* — M, where X is a finite alphabet,
M is a finite monoid, and ¢ maps onto M, is a C-pseudovariety if the following
conditions hold:



(i) Let ¢ : ¥* - M bein V, f : I'* — X* in C, and suppose there is a
homomorphism « from I'm(¢o f) onto a finite monoid N. Then aogpo f : [™* - N
isin V.
(i) If ¢ : Z* - M and ) : X* — N belong to V, then so does ¢ x ¢ : T* —
Im(¢ x 1) C M x N.
Example. Let C = Cyy;, and let V be a C-pseudovariety. Suppose ¢ : X* — M
isin C, and let ¢ : I'™* — M be a surjective homomorphism. Then there is a
homomorphism f : I — X* such that ¢ = ¢o f = 1y 0 ¢po f, and thus ¢ is
in V. Consequently membership of ¢ in V depends only on Im(¢), so we can
identify V with a collection of monoids. It is easy to see that this collection of
monoids is closed under direct products and division, and so is a pseudovariety of
finite monoids (an “M-variety” in Eilenberg’s terminology). Conversely, if V is a
pseudovariety of finite monoids, then the collection of all homomorphisms from
finitely-generated free monoids onto members of V forms a C,j;-pseudovariety.
Example. In a like manner, if V is a C,.-pseudovariety, then the family of
semigroups ¢(XT), where ¢ : ¥ — S is in V, forms a pseudovariety of finite
semigroups (an “S-variety”). Conversely, if V is a pseudovariety of finite semi-
groups, then the family of homomorphisms ¢ : X* — M, where ¢(X*) € V, is
a Cp-pseudovariety.
Example. We show how to generate C;,,,-pseudovarieties that are not C,,. pseu-
dovarieties. These examples arise in the study of regular languages in circuit
complexity classes (see Barrington, et. al. [2]); their logical theory is discussed
at length in Straubing [10]. Let ¢ : £* — M be a homomorphism, with M a
finite monoid. The sets ¢(X?) = ¢(X)¢, for i > 0, form a finite subsemigroup 7~
of the power semigroup of M, and consequently there is a unique idempotent
S = ¢(X*) in T. Since S = S2, S is a subsemigroup of M, which we call the
stable subsemigroup of ¢. Let V be a pseudovariety of finite semigroups, and let
W be the family of all surjective homomorphisms ¢ : X* — M whose stable
subsemigroup belongs to V. Then W is a Cy,,-pseudovariety. We omit the proof.
The following lemma, whose simple proof we omit, gives a description of the
C-pseudovariety generated by a collection of homomorphisms.

Lemma 1. Let @ be a collection of homomorphisms from finitely-generated free
monoids onto finite monoids, and let C be a category of homomorphisms between
free monoids. The smallest C-pseudovariety containing & consists of all surjective
homomorphisms o : X* — M for which there exist finite alphabets X1,..., X,
homomorphisms ¢; : X7 — M; in @, and homomorphisms f; : ¥* — XF in C
such that whenever

¢i o fi(v) = @i o fi(w)

foralli=1,...,r, then a(v) = a(w).

2.3 Varieties of languages and the Eilenberg correspondence

Let C be a category of homomorphisms between free monoids, and let V be a
C-pseudovariety. Let )V be the mapping that associates to each finite alphabet X/



the family
V(E) = {LQE*NL EV}a

where pr, : * — M (L) denotes the syntactic morphism of L. We call V the
C-variety of languages corresponding to V.

The two theorems below are due to Eilenberg [5] for the case of M- and S-
varieties, which, as we have seen, are identical to C,;- and C,.-pseudovarieties.
The generalization given here to arbitrary C-pseudovarieties is entirely straight-
forward.

Theorem 1. The mapping V — V is one-to-one.
Proof. Suppose V; and V4 are C-pseudovarieties of homomorphisms such that
V1 = V,

and
Vo= V.

Let ¢ : ¥* — M be in V;. As is well known, for each m € M, the syntactic
morphism
fo=1(m) : Z* = M(¢~'(m))

factors through ¢, and ¢ in turn factors through

I #o-rmy: =5 = J] M(¢7"(m)).

meM meM

The first of these statements implies that each pig-1(,,) is in V3, and the second
that ¢ is in V. Thus V; C V. It follows by symmetry that V; = V.

Theorem 2. Let V be a mapping that associates to each finite alphabet X a
family V(X) of regular languages in X*. V is a C-variety of languages if and
only if it satisfies the following properties:

(i) V(X)) is closed under boolean operations.

(#) If L € V(X)) and o € X then the quotients

oc'L={ve X*:0veL}
and

Lo~'={ve X*:vo €L}
are in V(X).

(iii) IFLe V(X) and f : T* — X* is in C, then f~1(L) € V(I).

Proof. As is well known, the syntactic morphism of L C X* is identical to that of
Y*\L, pr,uL, factors through pr, X pr,, ftre-1 and p,-17, both factor through
pr, and pyg-1(gy factors through pr, o f. It follows that any C-pseudovariety of
languages satisfies the properties above.



For the converse, let V satisfy the properties listed in the lemma. Let V be
the smallest C-pseudovariety of homorphisms such that for each finite alphabet
XY, V contains the syntactic morphisms of all languages in V(X). We claim V is
the C-variety of languages corresponding to V. To prove this, it suffices to show
that if L C X* and pg : ¥* — M(L) is in V, then L € V(¥). By Lemma 1, if
pr is in V, then L is a union of sets of the form

m f;l o Ni,l(mz)a

i=1
where each f; : ¥* — X¥ isin C, each L; C X is in V(X;), and where the union
ranges over a finite set of r-tuples (m1,...,m,) € M(L1) x --- x M(L,). From
the definition of the syntactic monoid it follows that each of the sets pzil (my) is
a finite boolean combination of sets of the form uw~'L;v~!, for various words u
and v over X;. It follows from the stated closure properties of V that L € V(X).

3 Application to Logic

3.1 Defining regular languages in formal logic

We begin by giving an example of the kinds of logical formulas we are talking
about. Consider the sentence

—3zY(y =2+ 1A Qo A QoY)

We interpret this sentence in words over a fixed finite alphabet X' = {0, 7}. The
variables in the sentence represent positions in the word; i.e., integers in the
range from 1 to the length of the word. The formula @,z is interpreted to mean
“the letter in position x is ¢”. Thus the sentence above says, “The word does
not contain two consecutive occurrences of ¢.” The sentence thereby defines the
language over X consisting of all such words.

We also consider sentences containing modular quantifiers 3" ™9 " where
0 <r < n. For example, the sentence

z(Q,x A F0 ™4 2y(y < x))

means that the word contains an occurrence of ¢ in an odd-numbered position
(that is, a position x such that the number of positions strictly to the left of x
is even).

In general we will consider families of regular languages in which we restrict
(i) the kinds of quantifiers that appear in the sentence; (ii) the kinds of numerical
predicates (e.g., the formulas y = z + 1 and y < z in the examples above) that
appear in the sentence; (iii) the depth of nesting of the quantifiers; and (iv) the
number of variables. A full account of this model-theoretic approach to defining
regular languages can be found in [10].

For the class of quantifiers used, we will allow the following three possibilities:
(i) ordinary first-order quantifiers; (ii) modular quantifiers with a fixed modulus



n; (iii) both ordinary quantifiers and modular quantifiers of modulus 7 in combi-
nation. For the class of numerical predicates, we allow the following possibilities:
(i) {=} (equality alone); (ii) {=,+1} (successor and equality together; (iii) {<}
(ordering); (iv) {<,+1} (ordering and successor); (v) {<,=¢ (mod m)} (or-
dering, together with the predicates x = ¢ (mod m) for a fixed modulus m).
We make the convention that this last class includes a 0-ary numerical predicate

length =1 (mod m)

which is satisfied by words whose length is congruent to ¢ modulo m. This
predicate can be defined by a depth 2 formula using the other predicates in
the class, but as we shall see below, we get sharper results if we include it among
the atomic formulas. Similarly, the successor relation can be defined in terms of
< and thus the class (iv) above might appear superfluous. But this definition
requires us to introduce an extra level of quantification and new variables, and
would thus affect the statement of our main theorem. On the other hand, z =y
can be defined in terms of < (as =((z < y) V (y < z)) without introducing
quantifiers or new variables, and thus it really would be superfluous to include
equality in the class (iv).

Given one of our permitted choices Q for the class of quantifiers, A/ for the
class of numerical predicates, d > 0 and r > 0 we define

Vo d,r

to be the mapping that associates to each finite alphabet X the family

VQ,N,d,r(Z)

of languages defined by sentences of quantifier depth no more than d, using quan-
tifiers in Q, numerical predicates in N and no more than r variables. Note that
this notation suppresses mention of the fixed moduli n and m in the quantifier
class and the class of numerical predicates.

Our main result is

Theorem 3. Vg y,q4.r is a C-pseudovariety, where

(i) C =Cau if N = {=} or N = {<}.

(ii) C = Cpe if N is one of the classes that contains +1.
(it) C = Cppy if N = {<,z =i mod m}.

3.2 Sketch of the proof of Theorem 3

Throughout this section we will suppose that the classes Q of quantifiers and
N of numerical predicates, as well as the alphabet X, are fixed. The proof of
the main theorem rests on two model-theoretic lemmas, which we shall state
shortly; we omit their proofs. Readers familiar with Ehrenfeucht-Fraissé games
will recognize that if only ordinary quantifers were involved, then both lemmas
could be proved fairly directly by the application of such games. But game-based



arguments are difficult to adapt to modular quantifiers, and so we were obliged,
in the full paper, to give a different argument.

In order to prove theorems about sentences (that is, formulas without free
variables) safisfied by words, we need to establish results about formulas with
free variables satisfied by structures. Here a structure is a pair (w,I), where
w € X* and I is a map from a finite set V' of variable symbols into {1,...,|w|}.
A formula whose free variables are contained in dom(I) can be interpreted in
such a structure. The formal semantics are defined in [10]; however, it should be
clear from the context what we mean when we say that such a structure satisfies
a formula.

Given Q, N, r > 0 and d > 0, we define an equivalence relation ~g4, on
structures as follows:

(w7 I) ~d,r (wla II)

if dom(I) = dom(I'), and if the two formulas satisfy exactly the same formulas
(over the given base of quantifiers and numerical predicates) of depth no more
than d and with no more than r variables, whose sets of free variables are con-
tained in dom(I). Because we fix the alphabet X and the moduli allowable in
modular quantifiers and numerical predicates, there are only finitely many in-
equivalent formulas with a given depth and fixed set of free variables. Therefore
~4.r is an equivalence relation of finite index on the set of structures (w, I) over
a given alphabet X and finite set of variable symbols dom(T).

Our fist lemma says that, in a certain sense, ~4,, is a congruence on struc-
tures.

Lemma 2. Let d >0, r > 0. Let (w,I) ~q, (W', I'), and let 0 € X. Then
(wo,I) ~q, (w'o,I'),

and
(ow,J) ~q, (ow',J'),

where dom(J) = dom(J') = dom([I), and for all x € dom(I), J(x) = I(z) + 1,
J'(z)=I'(z) + 1.

Now let (w,I) and (w',I') be ~g4-equivalent structures, with w,w’ € X*.
Let f : X¥* — I'* be a homomorphism. We will define a number of structures over
I' associated with these two structures. We begin with an example: Let w = o,
w' =orr, I(x) =I'(x) =1, I(y) = 2, and I'(y) = 3. The two structures are then
~o,2-equivalent over the base of ordinary quantfiers and N' = {<}. Let f(o) = 0
and f(7) = vd7. f(w) then decomposes into the two factors f(o) f(7), and f(w')
likewise decomposes into three factors. A structure (f(w), J) is compatible with
(w, I) if the domains of I and J are the same, and if whenever I(v) = i, J(v)
is a position in the i** factor of f(w). In the present example, J(z) can be 1 or
2, and J(y) can be 3,4 or 5; there are consequently six different such structures
compatible with (w,I). Let us pick J(z) = 2 and J(y) = 4. There is then a



unique structure (f(w'), J') that is compatible with (w',I') and consistent with
(f(w),J) in that if J maps v to the j** position of one of the factors of f(w),
then J' maps v to the j* position of the corresponding factor. In our example
we must have J'(z) =2 and J'(y) = 7.

In general, set

and
W =0l --al,
So
f(w) = f(o1)--- f(ow),
and

f@') = flo1) - fop)-

If 7 is a position in f(w), then we set p(i) = j if i belongs to the factor f(o;),
and ¢(i) = t, if i is the t*" position in f(o;). We define analogous mappings p'
and ¢' on the positions of w'. We say (f(w),J) is compatible with (w,I) if I
and J have the same domain, and p(J(v)) = I(v) for all v in this domain, and
that (f(w'),J') is consistent with (f(w),J) if it is compatible with (w',I'), and
if ¢(J(v)) = ¢'(J'(v)) for all variable symbols v.

Here is our second principal lemma.

Lemma 3. Let f : X* — I'* be a C-homomorphism, where
(i) if N ={=} or N = {<}, then C = Coy;
(#)if N contains +1, then C = Cpe;
(iii) if N ={<,=1 (mod m)}, then C = Cypy.

Letd,r > 0 and let (w,I), (w',I") be ~q .-equivalent structures, with w,w' €
X*. Let (f(w),J), f(w'"),J") be consistent structures compatible with (w,I) and
(w', I"), respectively. Then

(f(w)a J) ~d,r (f(wl)a JI)

We now complete the proof of Theorem 3. By Theorem 2, it suffices to show
that Vo v .4,r is closed under boolean operations, quotients, and inverse images
of homomorphisms in C. Closure under boolean operations is trivial. To show
closure under inverse images, let L € Vg n,4,-(¥), and let f : I'™* — X* be a
homomorphism in C. Let w € f~!(L), and suppose w ~gq, - w', for some d,r > 0.
Then by Lemma 3, f(w) ~4 f(w'), and thus, since L is a union of ~g4 ,-classes,
f(w') € Lysow' € f~Y(L). It follows that f~!(L) is a union of ~4 ,-classes, and
thus in Vg ar,q,-(I).

The identical argument, using Lemma 2, shows closure under quotients.



4 Related Results and Directions for Further Research

4.1 Explicit characterization of logically-defined classes

Which regular languages can be defined by 3-variable first-order sentences of
quantifier depth no more than 7 over the base {=, +1}? We don’t know, but we
do know, thanks to Theorem 3, that a language belongs to this family if and
only if its syntactic semigroup belongs to a particular pseudovariety of finite
semigroups—that is, this family of languages forms a C,.-variety of languages.
Our work leads to an infinite assortment of such questions, all of which, we
now know, have algebraic answers, and some of these answers are likely to be
compelling and interesting.

We do, in fact, possess an effective characterization of the pseudovariety
of finite semigroups corresponding to the family of languages defined by first-
order sentences over {=,+1}. (See [10].) We conjecture that there is an infinite
hierarchy within this family based on the number of variables. (In contrast, if <
is included among the numerical predicates, three variables suffice to define all
languages in the class.)

For technical reasons, our arguments do not apply to classes defined over the
base {+1}, without the use of equality. In fact, £ = y is definable in terms of
successor, by the 3-variable formula

Vz(z=z+1 2=y+1).

This leaves open the characterization of the languages definable by 2-variable
sentences over this base. In fact it is not difficult to show that this is pre-
cisely the class of locally testable languages, which is well known to form a
Cne-pseudovariety of languages.(Brzozowski and Simon [3].)

4.2 Universal algebra of pseudovarieties of homomorphisms

There is now a well-developed theory, rooted in universal algebra, concerning
pseudovarieties of finite semigroups and monoids. This research, which centers
around the use of a special kind of equational description—“pseudoidentities” —
to define pseudovarieties, and computations in free profinite semigroups, has
become an important tool in the study of finite semigroups. (See Almeida [1].)
There is doubtless an extension of this theory to the pseudovarieties of homomor-
phisms that we study in this paper. As a first step in this direction we pose the
problem of giving an equational description—whatever that might mean in this
setting—of the Cj,,,-pseudovariety of homomorphisms whose stable semigroups
are aperiodic.

We also ask about an extension of our theory to include the positive varieties
of Pin [8].



4.3 Applications outside of logic

Circuit Complexity. The Cy,,,-pseudovariety of homomorphisms whose stable semi-
groups are aperiodic first arose in the study of regular languages in circuit com-
plexity classes [2]. It was this work on circuit complexity that to some degree
motivated the present paper. Theorem 3 makes it easy to prove that a large
assortment of families of regular languages defined by circuits are Cj,,-varieties
of languages, and thus admit characterizations in terms of their syntactic mor-
phisms. For example, let us fix d > 0, and consider the regular languages that
are boolean combinations of depth d AC%-languages—that is, the boolean clo-
sure of the family of languages recognized by polynomial-size, depth d families
of circuits with unbounded fan-in AND and OR gates. It is easy to verify that
the resulting family of regular languages satisfies the closure properties of The-
orem 2 with C = Cp,,, and is consequently a Cj,,-variety of languages. It would
be quite interesting to precisely identify the corresponding pseudovariety of ho-
momorphisms. (By way of comaparison, the union of these families over all d
corresponds to the Cp,-pseudovariety consisting of all homomorphisms whose
stable subsemigroups are aperiodic.)

Generalized Star-Height. We can also consider the category Cy, of length-preserving
homomorphisms between free monoids. It is a long-standing open problem whether
the generalized star-height of regular languages is bounded, or indeed if there
are any regular languages whose generalized star-height is strictly greater than
1. See Pin, et. al., [9], where it is proved that the family of languages of gen-
eralized star-hight no greater than d, for each fixed d, satisfies the hypotheses
of Theorem 2 for Cj,. Thus membership of a language in this family is again
determined by the syntactic morphism of the language.
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