Circuit Complexity and the Expressive Power

of Generalized First-Order Formulas

Howard Straubing*

Department of Computer Science, Boston College
Chestnut Hill, Massachusetts, USA 02167

Abstract. The circuit complexity classes AC?, ACC, and CC (also called
pure-ACC) can be characterized as the classes of languages definable in
certain extensions of first-order logic. All of the known and conjectured
inclusions among these classes have been shown to be equivalent to a single
conjecture concerning the form of the formulas required to define the regular
languages they contain. (The conjecture states, roughly, that when a formula
defines a regular language, predicates representing numerical relations on the
positions in a string can be replaced by predicates computed by finite state
automata.) Here this conjecture is established in a special case: It is shown
that the conjecture holds for the subclasses of AC®, ACC, and CC defined
by restricting all the numerical predicates occurring in the logical formulas
to be either unary relations, or the order relation < .

1 Introduction

Certain formulas of predicate logic can be interpreted in a natural way in strings over
a finite alphabet. First-order variables are interpreted as positions in the string, and
the first-order predicate symbols are interpreted as either purely numerical relations
on the positions, or as asserting that a certain input letter is found at a given
position. Higher-order variables, if there are any, are interpreted as ranging over
sets of positions or relations on positions. Thus a sentence (a formula without free
variables) defines a language—namely the set of all strings that satisfy the sentence—
and a class of sentences defines a class of languages. (See the examples in Section 2,
where a precise account of the logical formalism is given.)

This viewpoint has been used in at least two distinct ways: The first is the charac-
terization of computational complexity classes in terms of formal logic. For example,
Fagin [F], showed that existential second-order sentences define precisely the lan-
guages in N P, and Immerman [I] characterized a large number of complexity classes
within P in terms of logic. He showed, among other results, that the nonuniform
circuit complexity class AC?, defined by constant-depth, polynomial-size boolean
circuits with unbounded fan-in, consists of exactly those languages defined by first-
order sentences with arbitrary numerical predicates.

The second use has been in the classification of finite automata: Biichi [Bu] showed
that the regular languages are precisely those defined by second-order sentences with
the numerical predicate < y on first-order variables and with monadic second-order
variables. McNaughton [MP] showed that the first-order sentences with the numerical

* Supported by NSF Grant CCR-8902369

predicate z < y define exactly the ‘star-free’ regular languages: These can be char-
acterized as those languages represented by an extended regular expression without
the use of the x operator, or alternatively as the class of regular languages whose
syntactic monoids contain no nontrivial groups. Straubing, Thérien and Thomas
[STT] introduced modular quantifiers, and showed that using these alone or in com-
bination with the ordinary first-order quantifiers and the numerical predicate z < y,
one defines classes of regular languages that can also be characterized in terms of
their associated syntactic monoids.

These two applications of the logical characterization of language classes turn out
to be closely related. Barrington and Thérien [BT] have shown that many circuit
complexity classes within NC*, including NC" itself, can be characterized as the be-
havior of polynomial-length families of programs over finite monoids, where different
classes of monoids yield different circuit complexity classes. (NC* consists of those
languages accepted by polynomial-size log-depth families of bounded fan-in boolean
circuits. The subclass C'C consists of those languages accepted by polynomial-size
constant-depth unbounded fan-in families of circuits in which each gate determines
whether the sum of its input bits is divisible by g, for some fixed ¢ > 0. The subclass
ACC is defined similarly, except here one allows both the MODgq gates and un-
bounded fan-in boolean gates.) These programs can be viewed as generalizations of
ordinary finite automata, so that, in a sense, the classification of regular languages
according to the structure of the associated syntactic monoid extends to languages
within NC*.

In [BCST] these results on programs, together with McNaughton’s theorem on reg-
ular languages defined with first-order sentences, are used to give a new proof of
Immerman’s logical characterization of the circuit complexity class AC?. In [BCST]
and [CDPC], the results of Straubing, Thérien and Thomas on modular quantifiers
are used to give analogous characterizations of the classes ACC and CC.

At this point an interesting fact emerges: Let A be a finite alphabet. If Q is a
set of quantifiers and S a set of numerical predicates, then Q[S] denotes the class
of languages defined by sentences using quantifiers in Q, numerical predicates in
S, and, for each input letter a € A, a monadic predicate @, that says that the
letter in the given position is a. Let A/ be the set of all numerical predicates. The
characterizations of AC?, ACC and CC can then be written

AC® = {3}V],

CC={3:0<r< g}V,

and

ACC = ({FHu{F:0<r < g})NV],

where {3} : 0 < r < g} is the set of modular quantifiers of modulus ¢. Let P denote
the set of numerical predicates that can be obtained by first-order quantification
over predicates of the form z = 0 (mod r) and z < y. Let R denote the class
of regular languages over A. The characterization of the regular languages in AC°
given in [BCST] shows

{FHNINR = {3}P].
Remarkably enough, this result, which is equivalent to the circuit lower bounds of
Furst, Saxe and Sipser [FSS] and Ajtai [A] was conjectured twenty years ago by
McNaughton and Papert [MP], before the connection with circuit complexity was
appreciated.

Let T be a set of integers, and let M OD7 be the set of modular quantifiers with
moduli in T Tt is conjectured that for any @ = MODr, or @ = {3} U MODr,

QN NR = Q[P].

This conjecture is equivalent to most of the conjectured properties of the complexity
classes AC?, ACC and CC. For instance, it implies, among other things, that the
AN D fucntion of n input bits cannot be computed in CC, and that ACC is properly
contained in NC'. Thus one approach to these open problems of circuit complexity
is to study the question of the kind of sentences needed to define regular languages,
in the hope of directly establishing the conjecture. (See [CDPC] and [BCST].)

In the present paper the conjecture is shown to hold for formulas in which each
numerical predicate is either a monadic predicate or the order relation < . More
precisely, let M be the class of all monadic numerical predicates. Then for any
Q = MODT; or Q = {H}UMODT,

Q{<}UM]NR C Q[P].

The proof of this theorem relies on semigroup-theoretic constructions and previ-
ous work of Barrington and Straubing [BS] on the power of linear-size programs
over finite monoids. In Section 2 I give formal definitions of the underlying logical
apparatus and a precise statement of the main theorem. Section 3 contains the nec-
essary background concerning finite semigroups, and Section 4 the proof of the main
theorem.

2 The Logical Apparatus

Let A be a finite alphabet. Informally, the logical formulas used here are built from
two kinds of atomic formulas: For each letter a € A there is a monadic predicate
symbol @,, where),z is interpreted to mean ‘the letter in position x is a’. The
second kind of atomic formula is a numerical predicate. This can be of any arity
(including 0)—the important property of a numerical predicate 6 is that 6(z1, . .., zx)
depends only on the positions z; and the length of the string in which the formula
is interpreted, and not on the letters that appear in those positions. Larger formulas
are built from atomic formulas by applying boolean connectives and quantifiers.
There are two kinds of quantifiers: the ordinary existential quantifier 3 and modular
quantifiers 3, where 0 < r < ¢. 3;®(z) is interpreted to mean ‘there exist exactly
r mod ¢ positions z such that ®(x)’. The universal quantifier V can of course be
defined in terms of 3.

For example, let A = {a, b, c}. The set of all strings in A* that contain an occurrence
of a before some occurrence of b is defined by the sentence

F2y(Qaz A Qpy A (T < y)).

The set of all strings with an odd number of occurrences of the factor ac is defined
by the sentence

H%IU(QGJE Ay(Qey A (y =z +1))).

In these two formulas the numerical predicates are the binary predicates z < y and
y = x + 1. There are several ways to define the language L consisting of all strings
of even length. One can write

Bz(z = z).
Alternatively, one can introduce a monadic numerical predicate 6(x) asserting that
z is an even-numbered position, and write
Va(y(y < z) — 6(x)),

which says that the last position is even. However, the numerical predicates are
allowed to depend on the length of the string in which they are interpreted, so there
is a perfectly legal 0-ary numerical predicate a with the interpretation ‘the length
is even’, and thus L is also defined by the sentence

Q.

This framework must be defined more precisely for the purpose of proving theorems
about formulas. Let {z1,...,z,} be a set of variables. A numerical predicate with
free variables z1,...,z, is a subset S of (2{#1:+%r})* such that for all

v=T---T, €S

one has
T:NT; =0,
if ¢ # 7, and
k
U T, ={z1,-..,2:}.
i=1
A word structure with free variables x1,...,x, is a string

w = (a1, Tv) -~ - (ar, T) € (A x 28000 dy>
such that the string

T Ty

satisfies the two conditions above. Formulas are built from numerical predicates
and the predicates Q,z,a € A, by applying boolean operations and quantifiers. A
formula with free variables x1, ..., x, is interpreted in a word structure whose free

variables include 1, ..., 2,. It remains to define the satisfaction relation |= . Let w
be a word structure and let N be any numerical predicate whose set of free variables
is contained in the set of free variables of w. Then

wEN

if and only if the string w, obtained from w by erasing the letters of A and eliminating
the variables that are not free variables of IV, belongs to N.

wE Qur

if and only if w includes a symbol (a,T) where z € T. Boolean operations are
interpreted in the usual fashion.

w = Jxd(x)

if and only if x is not a free variable of w, and w includes a symbol (a,T’) such that
if v is the string that results from w upon replacing (a,T) by (a,T U {z}), then

v = &(x).

If the number of symbols with this property is congruent to r modulo ¢, then

w = Iz d(x).

Let ¥ be a formula with free variables xz1,...,z,. Then Ly denotes the set of all
word structures w with these free variables such that w = U. If ¥ is a sentence,
that is, a formula without free variables, then Ly is a language in A*.

The family of languages definable by sentences that use only the quantifier 3 is de-
noted ACY; the family of languages definable by sentences that use only modular
quantifiers of modulus ¢ is denoted C'C(q), and the family of languages definable by
sentences that use both modular quantifiers of modulus ¢ and 3 is denoted ACC(q).
Observe that AC® = ACC(1). Of course, these families were originally defined in
terms of constant-depth circuits. The equivalence of the circuit definitions with these
logical formulations is proved in [I] for AC?, in [BCST] for ACC(g), and in [CDPC]
for CC(q). Let mAC°, mACC(q), mCC/(q) denote the families obtained by restrict-
ing to sentences in which the only numerical predicates are the order relation <, and
0-ary or unary (i.e., monadic) predicates, that is, predicates with no more than one
free variable. In the notation of Section 1,

mAC® = (H[{<}u M,

and the other new classes are defined analogously. As in Section 1, let P denote the
class of numerical predicates obtained as first-order formulas in numerical predicates
of the form z = 0 (mod r) and z < y, and let R denote the class of regular
languages over A. The main result of this paper is:

Theorem 2.1. For all ¢ > 0,

mACC(g) NR € ({3} UMOD4)[P],

and
mCC(q) "R € MOD,[P].

The corresponding assertion for the classes ACC(q) and CC(q) is known to hold
when ¢ is a prime power, but is in general, as noted in Section 1, an important open
problem in circuit complexity.

The proof of Theorem 2.1 will be given in Section 4. Some notions concerning finite
semigroups, necessary to the proof, will be given in the next section.

3 Background on Finite Semigroups

A semigroup is a set together with an associative multiplication. A monoid is a
semigroup with an identity element; the identity element is denoted 1. A subset of
a monoid closed under multiplication forms a subsemigroup of the monoid, and this
subsemigroup may well be a group. I denote by G, the family of all finite groups
that are solvable and whose cardinality divides a power of ¢; and I denote by M,
the family of all finite monoids M such that all the groups contained in M belong
to Gy. The family M; thus consists of all finite monoids containing only trivial
groups—such monoids are said to be aperiodic.

Programs over finite monoids were defined by Barrington and Thérien [BT] and,
implicitly, by Barrington [B]. Here we will only consider single-scan programs. A
single-scan program 7 of length n over a finite monoid M consists of a subset X of
M, called the set of accepting values, and a map

p:Ax{l,...,n} > M.

On input ay ---a, € A™ the program emits the element

¢(a17 1) T ¢(an7 n)

of M and accepts the input if and only if this emitted value is in X. (7 can be
thought of as a sequence of n instructions: each instruction emits an element of
M depending on the input letter that is read, and the program accepts or rejects
depending on the product of the emitted values.) Thus the program accepts a subset
|w| of A™. This apparatus will also be used when the input alphabet is one of the
extended alphabets A x 2{#1:»2+} described in Section 2. In this case |r| is defined
to be the set of word structures accepted by m, rather than the set of all strings over
the extended alphabet accepted by .

Ordinarily, one considers families of programs, consisting of a program of length n
over a fixed monoid M for each n > 0. The resulting family thus accepts a language
L C A*. An important special case is that in which there is a single set X C M
of accepting values for all programs in the family, and a single map ¢ : A — M
such that ¢(a,i) = 1(a) for all i and for all programs in the family. In this case
¢ extends to a_homomorphism é : A* — M, and the language accepted by the
family is L = ¢~ 1(X). This occurs if and only if L is a regular language. To any
regular language L one can associate the smallest finite monoid for which such a

homomorphism exists: To do this one defines an equivalence relation 25, on A*, by
setting u 2, v if and only if for all z,y € A*,

zuy € L & zvy € L.

Regularity of L implies that the index of 2, is finite, and it is easy to see that
equivalence is compatible with concatenation of strings. Thus the quotient set

M(L) = A*] =,

forms a monoid, called the syntactic monoid of L, and the map 7, that sends each
string w to its =p-class is a homomorphism, called the syntactic morphism of L.
Observe that n;'(nr(L)) = L. If L C A% (the set of nonempty words over A) it
is sometimes more convenient to deal with the syntactic semigroup S(L) of L; this
is simply the image of AT under 7.. (See Eilenberg [E] or Pin [P] for a detailed
account of the matters discussed in this paragraph.)

Now let M be a finite monoid and K a finite set. A new monoid o(M, K) is defined
as follows: The underlying set of o(M, K) is M x 2M*ExM "and the multiplication
is given by

(m, X)(m',Y) = (mm',mY U Xm'),

where

mY = {(mm17k7m2) : (m17k7m2) € Y}7

and

Xml = {(m17k7m2ml) : (m17k7m2) € X}

It is easy to check that this multiplication is associative, and that (1, @) is the identity.
Thus ¢(M, K) is amonoid. o(M, K) and o4(M, K), defined below, are closely related
to the Schiitzenberger product and related constructions, and share many of the
properties of these products. (see [E], [W]).

Let ¢ > 0. Let Z,[S] denote the free Z,-module generated by S. The underlying set
of o,(M,K) is M x Z,[M x K x M], and the multiplication is given by

(m, X)(m',Y) = (mm', mY + Xm),

where left-multiplication by m and right-multiplication by m' are the unique linear
transformations defined by

m(my,k,m2) = (mma, k,ms), (m1,k,m2)m' = (m1,k,mam').

In both o(M, K) and ¢,(M, K), projection onto the left coordinate is a homomor-
phism onto M. Consider the restriction of this homomorphism to a group in o(M, K)
or o4(M,K). It is not difficult to show that in the first case the kernel of this ho-
momorphism is trivial, and that in the second case the kernel is an abelian group of
exponent ¢. It is also easy to show that if M is a group then oy (M, K) is a group.
This gives:

Proposition 3.1. Let ¢ > 0. If M € M, then o(M,K) € M, and o,(M,K) € M,.
If M € G, then o,(M,K) € G,. I

Let

ri = (mg, (1,k:,1)),1 <i < m,

where this is interpreted either as an element of (M, K), with the second component
a singleton set, or as an element of o4(M, K), with the second component viewed
as a sum with a single term. In the proposition below, the expression m;---m; is
taken to be 1 if i > j.

Proposition 3.2. In (M, K),

Pt = (M Mg, {(ma - My, ki, Mygr - -my) 1 1 <0 <nj).

In o (M, K),

TLeeo T = (My e Mg, Z (ma - mi—1, ki, Mig1 -+ -my)).
1<i<n

Proof. This is straightforward by induction on n. i

4 Proof of Theorem 2.1

It will first be shown that every language in mACC(q) or mCC(q) is recognized
by a family of single-scan programs over a monoid in M, or Gy, respectively. I will
then apply the results of Barrington and Straubing [BS] concerning the behavior of
linear-size programs over finite monoids.

It should be noted that the class mCC(1) is somewhat anomalous, since application
of a modular quantifier of modulus 1 gives a formula that is satisfied by all word
structures with the right set of free variables. It follows from this that membership
in a language in mCC(1) (or, for that matter, in CC(1)) depends only on the length
of the string, and thus Proposition 4.1 holds trivially. However the argument given
below does not apply in this case.

Proposition 4.1. Let ® be a formula with free variables z1,...,%,, in which all
numerical predicates are monadic, or z < y. If & uses only modular quantifiers of
modulus g, then Lg is accepted by a family of single-scan programs over a monoid
in Gg4. If ® uses 3 as well, then Lg is accepted by a family of single-scan programs
over a monoid in Mj.

Proof. The proof is by induction on the construction of ®. First, if the assertion
is true for ®; and ®,, then it is true for ®; A 2 and —®;. In the first case, the
program is constructed by taking the cartesian product of the two programs over the
direct product of the underlying monoids. In the second case, one keeps the same
underlying monoid but changes the set of accepting values from X to M\X. The
conclusion follows from the fact that M, and G, are closed under direct products.
Note that all the other boolean connectives can be expressed in terms of these two.

I now prove the assertion for quantifier-free formulas. By the preceding remarks
concerning boolean operations, it suffices to treat each of the three kinds of formulas

an7 H(J)), z < y7

where 6 is a numerical predicate. Consider the single-scan program = over a nontrivial
monoid M that emits m # 1 on reading (a, S) if z € S, and emits 1 otherwise. Let
the accepting set be {m}; then |r| = Lg,,;- (This is a slight abuse of notation:
More precisely, this construction gives a program 7 for each length input, and the
language accepted by the resulting family is Lg,,,.) Note that the only requirement
is that M be nontrivial, so M can be chosen to be in M, for any ¢ or in G, if
g > 1. Let p be the single-scan program over a nontrivial monoid M such that the
4" instruction emits m # 1 if and only if #(j) and the j* input letter (a, S) satisfies
r € S, and emits 1 otherwise. Again let the accepting set be {m}. Then |p| = Lg(y),
and, as before, M can be chosen to be in M, for any q or in G, if ¢ > 1. Finally,
if M is a nontrivial monoid then the wreath product M o M is the monoid whose
underlying set is MM x M, with multiplication given by

(f1,m1)(f2,m2) = (F,mymg),

where, for m € M,

F(m) = fi(m)fa(mm;y).

As is well known (see, for example, [E]) M o M is in M, (respectively G,) if M is.
Pick m € M\{1}. Let I : M — M be the map that sends every element to 1, and
let J: M — M be the map that sends m to m and all other elements to 1. Consider
the single-scan program o over M o M that, upon reading (a,S), emits (I,m) if
zxeSandy ¢S, (J,1)ify € Sand z ¢ S, and (I,1) otherwise. Let v be a word
structure whose free variables include x and y. Upon reading v, o emits the value
(K, m), where K(1) = m if v E z < y, and where K (1) = 1 otherwise. Thus if the
set of accepting values is {(K,m) : K(1) = m}, the program accepts L,<,. Once
again, M o M can be chosen to be in M, for any ¢ > 0, and in G, for any ¢ > 1.

It remains to study the effect of quantification. Let & be a formula with free vari-
ables z,z1,...,z, for which the assertion holds: Then there is a family {m,} of
single-scan programs over a monoid M that accepts Lg. Furthermore, M is in M,
or G4, depending on the quantifiers in ®. Consider now a single-scan program 7,
over (M, K), where K = M. The j** instruction of 7/, upon reading (a, S), emits
(m,{1,m',1)}), where m is the value emitted by the j** instruction of m, upon
reading (a, S), and m/' is the value emitted by the j** instruction of 7, upon reading
(a, SU{z}). Define the set of accepting values to be all pairs (m,Y) such that ¥ con-
tains a triple (m1,m2, m3) such that m;maoms is an accepting value for m,. It follows
from Proposition 3.2 that the family «], accepts L3 e. A similar construction gives
a family of programs over o,(M, K) that accepts Larse. (In this case the condition
on Y is that the sum of the coefficients of the triples (m1,ma,m3), with mimams
an accepting value for m,, be equal to r modulo ¢.) It follows from Proposition 3.1
that these monoids have the required structure. This proves the Proposition.[i

U; denotes the monoid {0,1} with the usual multiplication: 0-0=0-1=1-0 =
0,1-1=1.

Propostion 4.2. Let L C A* be a regular language. If L € mACC(q) then every
group in M (L) is solvable, and for ¢ > 0, every group in nr(A?) has order divid-
ing a power of q. Furthermore, if L € mCC(q), then n(AT) contains no monoid
isomorphic to Uj.

Proof. If M (L) contains a nonsolvable group, then by a result in [BCST], there is
some t > 0 such that nz,(A?) contains a nonsolvable group. Thus it suffices to consider
a nontrivial group G C nr(A?). Suppose L € mACC(q). It follows from Proposition
4.1 that L is accepted by a family {7, } of single-scan programs over some M € M.
Let C = nZl(G) N At. C can be viewed as a finite alphabet, and the restriction of
1L to C* gives a homomorphism 9 from C* onto G. Let e be the identity of G, and
g € G\{e}. It follows from the definition of the syntactic monoid that there exist
x,y € A* such that if ny(v) = e and ng(w) = g, then zuy € L and zvy ¢ L, or
vice-versa. By suitably modifying the first and last instructions of the program m,
one obtains a family of programs 6,, that accepts the language {u : zuy € L}. If n is
a multiple of ¢, then the composition of §,, with the embedding of C into A? gives a
family of single-scan programs {p,, } over M with input alphabet C. It follows from
Theorem 2.2 of [BS] that if G ¢ Gy, then there exist strings v,w € C™ such that
Y(v) = e, (w) = g, but p,, emits the same value on v and w. It thus follows that
there exist v',w’ € A™ such that 7. (v') = e,nr(w') = g, and zv'y, zw'y are either
both in L, or both in A*\L, a contradiction. So G € Gy. It remains to consider what
happens when L € mCC(g). In this case, M € G,. Observe that if n;,(AT) contains
a copy

of Uy, then for some ¢ > 0, nr,(A?) contains a copy of U;. (Take v,w € A mapping
onto U; and consider v/®! and w!?l.) The proof now proceeds exactly as above,
making the same appeal to the results of [BS]. I

The theorem now follows from arguments given in [BCST] and [CDPC]. In Theorem
7 of [BCST] it is shown that if L is a regular language containing no nonsolvable
groups, and such that every group in 7y, (A?) has order dividing a power of ¢, then

Le ({3} @] MOD{Q})['P].

In the proof of Theorem 6.3.1 of [CDPC] it is shown that if, additionally, np(A™)
contains no copy of Uy, then

Le MOD{q} ['P]

5 Additional Remarks

The results here imply that mACC (the union of the mACC(q) over all ¢ > 0)
is properly contained in NC!, and that mCC' (the union of the mCC/(q)) does not
contain the AN D function. In fact, these corollaries follow directly from Proposition
4.1 and the results of [BS]; the additional work done in Proposition 4.2 to characterize
all the regular languages in these classes is not needed.

It should be noted that equality, rather than just inclusion, holds for the first part
of Theorem 2.1, for the simple reason that the predicates =0 (mod r) are them-
selves monadic. Since ordinary first-order quantification over z = 0 and z < y is
required to form the numerical predicates in P, it is not clear whether equality

holds for the second part as well. A more interesting question is whether the quan-
tifier complexity is preserved in passing from the arbitrary monadic sentence to the
sentence with numerical predicates in P. There are strong indications that this is
true, but I have not verified this.

Of course, the principal open question is whether one can establish these results
for numerical predicates of arbitrary arity. Even if this can be done for dyadic nu-
merical predicates the result will be quite significant: The natural uniform versions
of the classes ACC(q) and CC(q) are defined using the single numerical predicate
BIT(z,y), which is interpreted to mean the z!* bit of the binary representation of
y is on [BIS]. Thus an extension of Theorem 2.1 to the dyadic case would resolve
most of the open questions about the relations among AC?, CC and ACC in the
uniform setting. My suspicion is that the monadic case is very special, and that any
extension beyond this will encounter all of the difficulties present in the most general
nonuniform setting.

References

[A] M. Ajtai, £] formulae on finite structures, Annals of Pure and Applied Logic 24
(1983), 1-48.

[B] D. Barrington, Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1, J. Comp. Syst. Sci., 38 (1989), 150-164.

[Bu] J. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Math.
Logik Grundlagen Math. 6, (1960), 66-92.

[BCST] D. Barrington, K. Compton, H. Straubing, and D. Thérien, Regular lan-
guages in NC', to appear in J. Comp. Syst. Sci.

[BIS] D. Barrington, N. Immerman and H. Straubing, On uniformity in NC*, J.
Comp. Syst. Sci., 41 (1990), 274-306.

[BS] D. Barrington and H. Straubing, Superlinear lower bounds for bounded-width
branching programs, in Proc. 6th IEEE Structure in Complexity Theory Conference
(1991) 305-314; to appear in J. Comp. Syst. Sci.

[BT] D. Barrington and D. Thérien, Finite monoids and the fine structure of NC*,
JACM 35, (1988), 941-952.

[CDPC] H. Straubing, Constant-depth periodic circuits, International J. Algebra and
Computation, 1 (1991), 49-87.

[E] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New
York (1976).

[F] R. Fagin, Generalized first-order spectral and polynomial-time recognizable sets,
SIAM-AMS Proceedings, vol. 7, American Mathematical Society, Providence (1974).

[FSS] M. Furst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial time
hierarchy, J. Math Systems Theory 17, (1984), 13-27.

[I] N. Immerman, Languages that capture complexity classes, STAM J. Computing
16, (1987), 760-778.

[MP] R. McNaughton and S. Papert, Counter-free Automata, MIT Press, Cambridge,
Massachusetts (1971).

[P] J. E. Pin, Varieties of Formal Languages, Plenum, New York (1986).

[STT] H. Straubing, D. Thérien and W. Thomas, Regular languages defined with
generalized quantifiers, Proc. 15th ICALP, Lecture Notes in Computer Science, 317,
561-575 (1988).

[W] P. Weil, Products of languages with counter, Theoretical Computer Science, 76
(1990).

