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Several recent papers [1,2,3,4] have considered the computational power of constant-depth
unbounded fan-in circuits with AND, OR, and NOT gates, augmented with a limited
number of MAJORITY gates. In particular Beigel, Reingold, and Spielman [3] have revived
the notion of a perceptron, a term introduced by Minsky and Papert [6] to mean a majority-
of-ANDs circuit. Such a circuit can be thought of as evaluating a polynomial in the input
variables with integer coefficients, and taking its sign. The degree of the polynomial
corresponds to the maximum fan-in of the AND gates. These devices can approximate
AND-OR circuits of constant depth [1], and simulate them probabilistically [3], but cannot
come close to computing the parity function of the inputs unless they have both polynomial
degree and exponential size. Aspnes, Beigel, Furst and Rudich [1] and Beigel, Reingold
and Spielman [4] consider a variant of the original perceptron, where the inputs to the
single MAJORITY gate are constant-depth, unbounded fan-in AND-OR-NOT circuits.
Following [4], we will call these “perceptrons” and view the original devices simply as

polynomials. It is proved in [5] that a perceptron requires exponential size (2"9(1)) to
compute the parity function, and this is improved in [1] to show that any subexponential
size perceptron must fail to compute parity on a constant fraction of the inputs. These
lower bounds for perceptrons are used in [1,2,4] to get lower bounds for other types of
circuits with a limited number of majority gates. In each case the circuit is converted
into an equivalent perceptron. We know therefore that a constant-depth circuit with one
majority gate in the middle [1], o(logn) majority gates [4], or even n°(") majority gates
[2] needs exponential size to compute parity. A primary tool in this work is to represent
a function by a polynomial over the real numbers, whose variables are the inputs to the
function. The lower bounds for the parity function make use of the fact that parity is in a
sense embedded within the real numbers, as multiplication within the set {1, —1}. On the
other hand, we would expect the other modular counting functions (the sum of the inputs
modulo % for other constants k) to also be hard to compute with perceptrons.
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Here we shall extend the previous lower bounds to circuits that compute the sum of
the inputs modulo k£ for any £ > 1. We do this by generalizing the real-valued “voting
polynomials” of [1] to the complex domain, where it is possible to represent addition
modulo £ by multiplication of k" roots of unity. Of course, with no obvious notion of the
“sign” of a complex number we must redefine many of the concepts of [1]. We also make
essential use of the rational approximation techniques of [4].

A few observations on complex polynomials.

Let k£ > 1. This will be fixed throughout the note. Let

and let

Observe that for 1 < 5 < k,

We are going to consider polynomial functions in n variables restricted to D™. We note
the following facts: (a) Let
x = (x1,...,2,) € D",

and let
X=(Z1,-..,Tn).

Then for any polynomial P,

P(x) = P(X) = P(T1,...,@n) = P(z1, ... zF~1).
In particular, P(x) is equivalent to a polynomial of degree no more than (k — 1) times the
degree of P.

(b) Since z* = 1 for € D, any polynomial is equivalent to one in which every monomial
has the form
i

./Ljil ...xnn’

where 0 <i; <k for j =1,...,n. We will henceforth suppose that every polynomial is in
this form. In particular every polynomial has degree no greater than (k — 1)n. The weight
of the monomial is the number of nonzero 7;. Observe that if m is a monomial of weight
w and degree d, then m has weight w and degree kw — d.

(¢) The polynomial
My, (x) = b=t gkt

maps (w',...,w') to w™(rttin) modk

(d) If 21,29 € C, then Re(z1%Z2) is the inner product of z; and zy considered as vectors in
R?2. Thus Re(z1Z2) > 0 if and only if the angle between z; and zs is less than 5
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(e) Consider a polynomial P that vanishes on D"™. We can write it as a polynomial of
degree k£ — 1 in a single variable, with coeflicients that are polynomials in n — 1 variables.

That is,

P(21,...,25) = po(X) + p1(X)Tn + - - + pr_1(x)2E T,
where x = (x1,...,%,_1). Thus for each x € D"~! this polynomial vanishes on D, and
thus each p; vanishes on D™~ !. It follows by induction that P is the zero polynomial.

(f) A polynomial P weakly represents a function f : D™ — C if P is not the zero polyno-

mial, and for all x € D™ such that P(x) # 0, Re(P(x)f(x)) > 0. The weak degree of f,
denoted d,,(f), is the degree of the smallest-degree polynomial that weakly represents f.

Weak degree of the product function M.
This is a generalization of Lemma 3 of [1]:

Lemma 1. d, (M) =n(k —1).

Proof. We introduce the following inner product on the space of functions from D™ to C :

(fr9)= D Fx)9x).

xeDn

It follows that if P is a polynomial weakly representing g, then Re({P,g)) > 0. On the
other hand, suppose that the degree of P is less than n(k—1), and that P weakly represents
M;.. Then P is a sum of monomials in which at least one variable appears to a power less
than & — 1. Thus for each such monomial m, we can factor

j
wa

.’EiED

for some 1 < i < mn, 1 < j <k, out of (m, Mg). Thus (m, M) = 0, and consequently
(P, My) = 0, a contradiction.ll

Killing a large set with a real-valued polynomial of small degree

Here we generalize Lemma 1 of [1].

Lemma 2. There is a positive constant ¢ (depending on k) with the following property.
Let S C D™, with |S| < c¢- k™. Then for sufficiently large n there is a nonzero real-valued
polynomial ¢ with degree no more than

n-(k—=1)—vn

such that ¢(x) =0 for x € S and ¢(x) > 0 for z € D™\S.

Proof. We will first show that a constant fraction of the £™ possible monomials have the
property that both their degree and that of their conjugate are at most %(n(k -1) -
v/n). Consider the uniform probability distribution on these monomials. The weight of
a randomly selected monomial is the sum of n independent random variables each taking

the values 0 and 1 with probabilities % and %, respectively. Thus the average weight of
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a randomly selected monomial is n(k —1)/k, and the standard deviation is 0 = (@)\/ﬁ
Let N denote the normal cumulative distribution function. By the Central Limit Theorem,
for large values of n, the probability that a randomly chosen monomial has weight between
n(k—1)/k—2/n/k and n(k—1)/k—3+/n/k is very close to N (—2/n/ka) — N (=3+/n/ko),
a positive constant depending only on k. For a particular weight w = n(k —1)/k — d\/n/k
in this range, the degree of a randomly chosen monomial of this weight is the sum of w
independent random variables, each with value uniformly chosen from the set {1,...,k—1}.
The mean degree is thus p,, = kw/2 =n(k —1)/2 — dy/n/2, and the standard deviation is

k? —2k
12

Ow :\/'E' @(\/ﬁ)

Recall that for any single monomial m of weight w, the sum of the degrees of m and of
mis kw = n(k — 1) — dy/n. As d is at least 2, if the degree of m is within /n/2 of
the mean p,, then both it and the degree of T will be no more than n(k —1)/2 — \/n/2,
as desired. This happens with probability approximately N (20,,/v/n) — N (=20, /y/n),
which is asymptotically a positive constant for each w and bounded below by the positive
constant for the minimum weight w = n(k — 1)/k — 3y/n/k. Thus the overall probability
that both the degree and conjugate degree constraints are satisfied is bounded below by a
positive constant c.

Now suppose |S| < c¢- k™, as in the hypothesis. Let us consider a polynomial p that is a
linear combination of monomials satisfying the weight and degree constraints given above.
Setting p(x) = 0 for all x € S gives a system of |S| equations in at least ¢ - k™ unknowns,
and thus has a nontrivial solution over C. Let us now set ¢ = pp. ¢ is real and nonnegative
on D™ and zero on S. The degree of ¢ is bounded above by the sum of the degrees of p
and p, which is no more than

completing the proof.|j
Connection with bounded-depth circuits.

We quote without proof a theorem from [1]. The OR function mentioned in the statement
maps {0,1}" to {0,1}. The polynomial obtained has integer values, and gives the value
OR(zy,...,zy,) on all but a small fraction of the 2™ inputs:

Lemma 3. For any ¢ > 0 and any distribution of the inputs there exists a degree
O(log(1/€) logn) polynomial with integer coefficients that computes OR(x1, ..., z,) with
probability at least 1 —e. I

We will consider unbounded fan-in boolean circuits with AND, OR and NOT gates and
depth d fixed independently of the number n of inputs. These circuits ordinarily compute
boolean functions from {0,1}™ into {0, 1}, but we can create circuits that compute func-
tions from D™ into {0, 1} : Such a circuit has (k — 1)n binary inputs, arranged in n groups
of k — 1 bits. Each input w® € D is encoded by the bit string 1¢0¥—1—¢,
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Lemma 4. Let € > 0. Given a circuit as described above, with depth d and size s, there is
a polynomial F of n variables with degree O((log(s/¢)logs)?) such that F' computes the
function from D™ into {0,1} computed by the circuit with no more than k™e errors.

Proof. Consider the probability distribution on the 2(*~1)” binary inputs that assigns
probability £~™ to each encoding of an element of D™ and 0 to all other inputs. We replace
each AND gate by an OR gate whose inputs and outputs are negated, and consider the
distribution of the inputs to each OR gate induced by the above distribution. By Lemma
3, for each gate there is a polynomial in x1, ..., Tx_1), with integer coefficients and degree
O(log(s/€) log s) that computes the OR with probability at least 1 — ¢/s. By taking the
composition of these polynomials we obtain a polynomial p of degree O((log(s/¢)log s)?)
that computes the boolean function computed by the circuit with probability at least
1 — €. Thus p makes at most k™e errors on the binary encodings of elements of D". By
interpolation we can construct k£ — 1 one-variable polynomials u1, ..., ux_1 each of degree
k — 1 such that u;(w") is the j** bit of the binary encoding of w”. Thus

F(x) = f(ui(z1),. . ug_1(z1), - s ur(Tn), .- s ug—1(zn))

is a polynomial whose degree is at most £ — 1 times that of f. F' computes the function
from D™ into {0,1} computed by the circuit with at most k™e errors. i

We now proceed to our principal result. Suppose we have a family of circuits of depth
d such that the nt* circuit in the family has n inputs, a single MAJORITY gate at the
output, and gives the answer 1 if and only if the number of input bits that are on is
divisible by k. We will show that the size of the circuits must grow exponentially in n. Let
us choose a large value of n (how large will be determined later) and consider the circuit
in the family with (k — 1)(n + 1) binary inputs. By fixing j of the last k¥ — 1 input bits to
1 and the remaining k£ — 1 — j of these bits to 0, we obtain for j = 0,...,k —1 a circuit C;
that computes the function g; : D™ — {0,1} given by

gi(w, .. win) =1
if and only if
—(i1 +---+1ip) mod k = j.

We can assume that the MAJORITY gate has an odd number (2r + 1) of inputs. Each
of these inputs is the output of an unbounded fan-in circuit of AND, OR and NOT gates
whose size is less than s and depth less than d. Thus by Lemma 4 we can approximate
these subcircuits by polynomials

fl(J)J R} 292}_17
each of which has degree O((log(%) log 5)?~!) and makes at most k" r@gry errors. Let
2r+1
f(j) — Z fi(j) —
=1
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Then fU) has degree O((log(%) log s)4~1), and for all but k" £ values of
x = (w",...,w"™) € D",

f(j)(x) > 0 if and only if
—(i1 + -+ +in) mod k = j.

We shall now use the following fact from [4], assuring the existence of rational functions
that closely approximate the sign function:

Lemma 5. Let § > 0. There is a rational function of one variable with real coefficients
S(y) = Q(y)/R(y) such that the degrees of ) and R are O(logr), and for each nonzero
integer y € [—r,r + 1],

S(y) = Bwy/lyl,

where 1 < f(y) <1+0. 1
Now let

o

-1

P(x) = (S(fP(x)) + 1),

<.
Il
=

where S is chosen as in Lemma 5, with 6 = 1/k. We claim that Re(P(x)Mj(x)) > 0 for
all but k™e points x € D™ : The union of the error sets of the f() has cardinality less than
k™e. For a point x outside this union,

Re(P(x)Mg(x)) = Re(co + crw + - - - cp_1wt™1),

where ¢ > 2 and, for j > 0, ¢; > —1/k, which proves the claim. We can write P as a
rational function whose denominator Z is real-valued on D". Thus, since r < s, Y = PZ?
is a polynomial of degree

A= O((log(%) log 5)%) = O((log 5)*%)

such that

{x € D" : Re(Y (x)M(x)) < 0} < k"e.

We now choose € to be less than the value ¢ given in Lemma 2, and take ¢ to be the
polynomial found in that lemma. Then qY weakly represents My, so by Lemma 1, A =
Q(y/n), and thus

log s = Q(nia).
We have proved:

Theorem 6. Let k£ > 1. Consider a family of unbounded fan-in circuits with AND, OR
and NOT gates and with a single MAJORITY gate at the output. Suppose that the depth
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of the circuits is a constant d, and that the n!* circuit in the family determines whether
the sum of the n input bits is divisible by k. Then the size of the nt” circuit is

9Q(nid)

Beigel, Reingold and Spielman [4] show how to simulate an unbounded fan-in depth d
threshold circuit (that is, a circuit with AND, OR, NOT and MAJORITY gates) by a
depth d + 4 circuit with a single MAJORITY gate at the output. The increase in size is
small enough so that subexponential size (2"0(1)) can be preserved if the original circuit
has o(logn) MAJORITY gates. Beigel [2] gives an improved construction of the same sort.
His can eliminate n°(1) majority gates while preserving subexponential size and constant
depth. This fact together with Theorem 6 implies

Theorem 7. Let k£ > 1. A constant-depth family of threshold circuits of size 2"0(1), with
n°() MAJORITY gates, cannot determine whether the sum of the input bits is divisible
by k.1

An open problem.

Smolensky [7] has shown that if p is prime, a constant-depth, unbounded fan-in family of
circuits with AND, OR, NOT and MOD p gates and size 27" cannot determine whether
the sum of the input bits is divisible by ¢, unless ¢ is a power of p. Naturally we conjecture
that the same result holds even if we allow a majority gate at the output, or even n°™M)
MAJORITY gates anywhere in the circuit. Smolensky represents the circuit’s behavior
by a polynomial over a field of characteristic p, while our techniques rely on polynomials

over a field of characteristic 0. We wonder if some combination of these methods could be
applied to circuits with both MOD p gates and MAJORITY gates.
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