REGULAR LANGUAGES DEFINED WITH
GENERALIZED QUANTIFIERS

Howard Straubing*
Computer Science Department
Boston College
Chestnut Hill, Massachusetts
USA 02167

Denis Thérien
School of Computer Science
McGill University
Montréal, Québec
Canada H3A 2K6

Wolfgang Thomas
Institut fir Informatik und Praktische Mathematik
Universitat Kiel
D-24098 Kiel
Germany

* Research supported by National Science Foundation Grant CCR-9203208

1

Abstract

We study an extension of first-order logic obtained by adjoining quantifiers that count with
respect to an integer modulus. It is shown that the languages definable in this framework
are precisely the regular languages whose syntactic monoids contain only solvable groups.
We obtain an analogous result for regular w-languages and establish some connections
with complexity theory for fixed-depth families of circuits. An earlier version of this paper
appeared in the Proceedings of the 1988 International Colloquium on Automata, Languages

and Programming.

Running head: Generalized Quantifiers

Contact author:

Howard Straubing

Department of Computer Science
Boston College

Chestnut Hill, Massachusetts, 02167

LIST OF SYMBOLS

J

< > < W

N
A

1S, >, 2
X, =\, €
C, =2 E#
U.NV
AC,C, FAC, FC—script AC , C, FAC
FOL M, Q,E-script FOL,M,Q,E
a, B,n, t, i, v-lower-case Greek alpha,beta,eta,iota,mu,nu

T, p, ¢, ¥, w—lower-case Greek pi,rho,phi,psi,omega

Introduction.

In this paper we give a logical characterization of an important family of regular languages
(also called recognizable languages): Those whose syntactic monoids contain only solvable
groups. These languages turn out to be precisely the sets definable in an extension of first-
order logic by generalized quantifiers of the form ‘there exist exactly r elements modulo ¢
such that...’. We obtain various subfamilies by imposing restrictions on the use of these
quantifiers in the defining formulas. This work is simultaneously a generalization of a
theorem of McNaughton and Papert [14] characterizing the so-called star-free languages
by first-order formulas, and a transfer of the work of Straubing [21] and Thérien [24] from

the domain of semigroup theory to logic.

It was shown by Biichi [7] that the regular languages are precisely those definable by
sentences in certain monadic second-order theories of linear order. McNaughton [14] con-
sidered the star-free regular languages—those that can be built from the letters of the
alphabet by repeated application of boolean operations and the concatenation product—
and showed that these are precisely the languages defined by first-order sentences. In this
context, a word is viewed as a finite ordered model, and properties of words are formalized
in the corresponding first-order language. For example, the set of words in which no more

than two letters are a is defined by the first-order sentence:

—AxTyTz(x <YAY < 2AQax A Quy N Qy2).

In this sentence, the variables x,y and z are interpreted as positions in the word, and Q,z
is interpreted to mean that the letter in position z is a.

Cyeclic counting, that is, counting with respect to an integer modulus, cannot be described
in first-order logic over ordered models with the unary predicates Q.. Indeed, the ordered
models that have an even number of elements with some given property serve in the lit-
erature as a typical example of a class that is not first-order definable. (See, for example,
[10],[13],[28],[1].) Such counting does, however, keep us within the family of regular lan-
guages, and thus one obtains new families of regular languages by adjoining quantifiers
that perform cyclic counting. The same generalized quantifiers are studied, in a different
context, by Paris and Wilkie [15].

We are able to precisely describe the class of regular languages definable in this extension
of first-order logic—in fact, we can effectively
determine if a given regular language is so definable—by appeal to previous work describing

the structure of regular languages in terms of algebraic properties of the syntactic monoid

5

of the language. (See 1.1 for the definition of the syntactic monoid.) The earliest work
in this vein was the theorem of Schiitzenberger [20] showing that a language is star-free if
and only if its syntactic monoid contains no nontrivial groups. Straubing [21] and Thérien
[24] studied new operations on languages based on cyclic counting, and showed that the
languages that could be built by means of these operations, together with the boolean
operations and concatenation, are precisely those whose syntactic monoids contain only
solvable groups. Our principal result (Theorem 2 below) shows that these are also the
languages obtained with the cyclic counting quantifiers. (In particular, we do not obtain
all the regular languages by means of these new quantifiers, since there are regular lan-
guages whose syntactic monoids contain non-solvable groups.) This theorem is presented

in Section 1.

In Section 2 we extend our results to sets of infinite words. This is based on earlier work

of Arnold [2], Perrin [16] and Thomas [25] concerning regular sets of w-words.

We are particularly interested in these results because of their connection to an algebraic
and automata-theoretic approach to boolean circuit complexity, recently studied by Bar-
rington and Thérien [6]. Barrington [3] introduced the complexity class ACC, defined in
terms of constant-depth families of circuits with unbounded fan-in in which both boolean
gates and cyclic counting gates are allowed to appear. Our result can be viewed as describ-
ing a ‘very uniform’ version of ACC, and may be relevant to Barrington’s conjecture that
ACC is strictly contained in the complexity class NC? of languages accepted by log-depth

bounded fan-in boolean circuits. We discuss these connections in Section 3.
In Section 4 we review related work and list some open questions.

In a preliminary version of this article [23] we proved the main theorems in Sections 1
and 2 by working directly with the generalized first-order formulas and finding a kind
of normal form for these formulas. In this we followed earlier work of Thomas [26] on
the logical characterization of the dot-depth hierarchy of regular languages. Our paper
contained several errors, and while these can easily be repaired, we thought it better to
present an alternative approach. We give a very different proof of the main theorem, using
arguments that are far more algebraic in character. The method used owes much to the
work of Rhodes and Tilson [19] on finite categories, although we do not explicitly mention
categories here. Our new proof also uses an idea of Perrin and Pin [17], who treat formulas

with free variables as defining languages over an extended alphabet.

1. The Characterization Theorem.

1.1 The families of languages.

Let A be a finite alphabet. A* denotes the set of all words over the alphabet A. Alge-
braically, A* is a monoid; that is, it has an associative multiplication (concatenation of
words) and an identity element (the empty word). If L, L' C A*, a € A, and 0 < r < ¢,
then (L,a, L', q,7) denotes the set of words w in A* such that the number of factorizations
w = vav', with v € L, v' € L', is congruent to » modulo ¢q. LaL' denotes the set of words
w = vav', where v € L, and v' € L’. Let AC be the smallest family of languages in A* that

contains the empty set and is closed under boolean operations and the operations

(L’ LI) ’_) (L’ a7 LI’ Q’ r)’

and

(L,L') + Lal'.

Let P be a set of primes, and let AC(P) be the smallest family of languages containing
the empty set and closed under the operations above, with the restriction ¢ € P.

Let C be the smallest family of languages closed under boolean opearations and the first
of the two operations above; C(P) is defined similarly, with the restriction ¢ € P. (In these
notations, A stands for ‘aperiodic’, and C for ‘counting’. Observe that AC()) is the family
of star-free languages, and that AC = AC(P), where P is the set of all primes.)

If L C A*, an equivalence relation =7, on A* is defined as follows: u =, v if and only if

{(z,y): 3,y € A% wuy € L} = {(z,y) : x,y € A", zvy € L}.

This equivalence relation is a congruence on A* (that is, it is compatible with the concate-
nation of words) and thus the quotient forms a monoid, called the syntactic monoid of L,
denoted M (L). The map sending a word in A* to its equivalence class is then a homomor-
phism of monoids, called the syntactic morphism of L, and denoted pr,. (By definition, a
homomorphism of monoids both preserves the multiplication and maps the identity ele-
ment of the domain monoid to the identity of the codomain.) A language is regular (also
called recognizable) if and only if the syntactic monoid is finite. (See Eilenberg [9], or Pin
[17] for a full account.) All the language families defined in the preceding paragraph are
contained in the family of regular languages in A*, and all can be characterized in terms
of the syntactic monoids of the languages they contain. The characterizations are given by
Proposition 1 below, whose proof may be extracted from [24] , where the results are stated
in terms of congruences rather than in terms of operations on languages. See also [21],
where an almost identical theorem is proved using the unary operation L — (L,a, A*, q,r)

in place of the binary operation (L, L") — (L,a,L’,q,r).

7

Proposition 1.
(a) L € AC if and only if M (L) is finite and every group in M(L) is solvable.
(b) L € AC(P) if and only if M (L) is finite, every group in M (L) is solvable, and every

prime dividing the order of these groups is in P.
(¢) L € C if and only if M (L) is a solvable group.

(d) L € C(P) if and only if M (L) is a solvable group, and every prime dividing the order
of M(L) is in P.

1.2 Syntax of logical formulas.

We build formulas using
variables: x,xg,x1,...;Y, Yo, Y1, ..., €LC.
boolean connectives: N,—. (pV q is, as usual, an abbreviation for —(—p A —q).)
non-logical symbols: <,Q.(a € A). (x = y is an abbreviation for ~((z < y)V(y < x)).)
existential quantifier: 3 (Vx¢ is an abbreviation for =3z—¢.)
modular quantifiers: 3(¢") with 0 < r < q.

The usual syntactic rules for the formation of formulas apply. @, is treated as a unary

predicate. If the variables occurring free in a formula ¢ are in {z, ...,x,} we sometimes

write ¢(z1, ..., Zn). If ¢ has no variables occurring free it is a sentence.

We can now define the following formula classes: FAC denotes the family of all formulas;
FC denotes the family of formulas in which only modular quantifiers (that is, no ordinary
existential quantifiers) are used. If P is a set of primes then FAC(P) denotes the family
of those formulas in FAC in which the moduli in the modular quantifiers all belong to P,
and FC(P) denotes the intersection of F.AC(P) and FC.

Throughout the paper, ‘formula’, means a formula of FAC with respect to a given alphabet
A, unless we explicitly restrict the formula to belong to a subclass of F.AC.

1.3 Semantics of logical formulas; statement of the main theorem.

A word structure is a pair (w, (11, ...,7)), k > 0, where w € A*, and each r; is a position in
w; that is, r; € {1, ..., |lw|}. We abbreviate (r1,...,7,) by r. If kK = 0 we simply write w for
the word structure (w,r). If (w,r) = (w, (r1,...,7%)) is a word structure and ¢(z1, ..., Tk)
is a formula whose free variables are in {x1,...,x%}, we define (w,r) = ¢(x1,...,x%) by

induction, as follows:

(w,r) Ez; < zj

8

if and only if r; < r;.

(w7 I‘) IZ Qar;

if and only if the letter of w in position r; is a.

(w,r) E Ixp10(21, oy Thy Thy1)

if and only if there is a position 7 in w such that (w, (r,7)) E ¢(z1, ..., Tg+1)-

(w,r) = 39z 1 p(21, ..o, Thy Thtr)

if and only if the number of positions r in w such that (w, (r,7)) = ¢(z1, ..., Tk41) 18

congruent to s modulo gq.
Boolean connectives have their usual interpretation.

If (w,r) = ¢ we say that the word structure satisfies ¢. Observe that there are no word
structures (w,r) where w is the empty word 1 and r is a nonempty sequence. Thus we

have

1): —El.’lfgb

and

1 = @04

for any formula ¢ having at most one free variable z.

If ¢ is a sentence then the set of all words w € A* such that w |= ¢ is a language, denoted
Ly4. We say that the sentence ¢ defines L.

Here is our principal result.

Theorem 2.

(a) {Ly: ¢ € FAC} = AC.

(b) For any set P of primes, {Ly : ¢ € FAC(P)} = AC(P).

(¢){Ly:¢p € FC}=C.

(d) For any set P of primes, {Ly : ¢ € FC(P)} =C(P)

The proof of Theorem 2 will be given in 1.5 and 1.6. Observe that part (b) with P = () is

the characterization of star-free languages as the languages defined by first-order sentences.

9

1.4 Ezamples.
In all of these examples, the underlying alphabet is A = {a, b}.

(a) Let Ly consist of all words in {a, b}* that contain the letter a. The syntactic monoid M
contains two elements—the congruence class of all words without a, which is the identity
of M, and the class of all words with a, which is the zero. As this monoid is aperiodic (that
is, it contains no nontrivial groups), Theorem 2 implies that L, is defined by a sentence in

FAC(D)—an ordinary first-order sentence. An example of such a defining sentence is

dzQ,x.

It also follows from Theorem 2 that L; is not definable by any sentence that uses only

modular quantifiers.

(b) Let Ly consist of all words in {a,b}* in which the number of occurrences of a is even.
(Ly is called the PARITY language.) The congruence class of a word is determined by the
number, modulo 2, of occurrences of a in the word. Thus M(Ls) is the group of order 2.
It thus follows from Proposition 1 that Ls € C({2}). By Theorem 2, L, is definable by a
sentence in FC({2}), namely

3202Q, .

We can also conclude from Theorem 2 that Ly is not definable by any sentence of F.AC(P),

where P is the set of odd primes.

(¢) Let L3 consist of those words in which the number of runs of consecutive letters a is

even. For example,

aababbaabaaab

contains four such runs, and is thus in Ljz. It is easy to verify that the congruence class of
a word is completely determined by the number, modulo 2, of such runs, together with the
first letter of the word and the last letter of the word. The empty word is in a congruence
class by itself. Thus the syntactic monoid has nine elements. Each of the two-element
subsets of the syntactic monoid formed by specifying the first and last letter is a group,
and these are the maximal groups in the syntactic monoid. Thus our theorem tells us that
L3 is definable by a sentence in F.AC({2}), but not by any first-order sentence, nor by any

sentence using only modular quantifiers.

10

Let us see how to construct a sentence that defines Lz. A position is the start of a run
of consecutive a’s if it contains a, and if it is either the first position in the word, or the

preceding letter is b. Thus the defining sentence is

3®V2(Quz A ((z=1) V3y((z =y + 1) A Quy)))-

Here ‘2 = 1’ is an abbreviation for
—3z(z < x),

and ‘x =y 4+ 1’ is an abbreviation for

(y<x)AN—-3z((y < 2) A (2 < x)).

(d) Let n > 1. Let us think of a and b as permutations of {1,...,n}; a denotes the
transposition (1 2) and b denotes the n-cycle (1 2 --- n). Thus to each word in
{a,b}* we can associate the composition of the underlying sequence of permutations in S,,,
the symmetric group of degree n. Let U,, denote the set of words such that this associated
permutation fixes 1. U, is the language recognized by the automaton pictured in Figure 1
(for the case n = 5).

FIGURE 1

It is well known that a and b generate all of S,,. Given any two distinct permutations m;
and 7o we can find permutations p; and ps such that pymips fixes 1 and p;7mp2 does not.

From these two facts it follows that the syntactic monoid of U, is isomorphic to S,,.

An interesting consequence emerges: U, can be defined by sentences of FC({2,3}) if n =3
or n = 4, but cannot be defined by any sentence of FAC if n > 4. This follows from our
theorem along with the solvability of the groups &3 and Sy, and the nonsolvability of S,, for
n > 4. In particular, we cannot define all regular languages within the logical framework
introduced here.

It is not evident how to produce defining sentences for Uy, or even for Us. In fact there
is a somewhat cumbersome algorithm for doing this: From a composition series for the
group, one can construct a wreath product decomposition of the group, and from this,
an expression for the language in terms of the operations L — (L,a, A* q,r) (Straubing
[21]). The first part of our proof of Theorem 2, given below, shows how to derive a defining

sentence from such an expression.

11

Let us give such a sentence explicitly in the case n = 3. Consider w € {a,b}*. Since
ab = b%a in S3, we may move all the a’s in w to the right to obtain a word b"a® that
represents the same permutation as w. Here s is simply the number of occurrences of a
in w. To determine r, we replace each b in w by 2" where m is the number of a’s that
precede the given occurrence of b—r is then the sum of the 2™ over all occurrences of b in
w. Since b3 = 1, we can just as well replace the occurrence of b in w by b2 if m is odd and
by b if m is even; we can then take r to be the number of occurrences of b in the result.
The permutations that fix 1 are the identity and ba. Thus w € L3 if and only if either r = 0
(mod 3) and s is even, or r =1 (mod 3) and s is odd. Let ag (respectively, a;) denote
the number of occurrences of b in w such that the number of occurrences of a that precede

this occurrence of b is even (respectively odd). Then ‘a; =7 (mod 3)’ is expressed by

¢i; = 3D 2(Qpr A Iy ((y < 2) A Quz)).

Us is defined by the sentence

[(3@92Q,2) A ((do,0 A $1,0) V (Bo,1 A b1,1) V (o2 A b1,2))]V
[V 2Qqz) A ((o,0 A d1,2) V (0,1 A d1,0) V (o2 A d1,1))]-

1.5 Formulas from languages.
We first prove AC C {Ly : ¢ € F.AC}. The analogous inclusions for parts (b)-(d) of
Theorem 2 are proved in an identical fashion. This is the easy part of Theorem 2.

First note that for every sentence ¢ € FAC there is a formula ¢[< z] € FAC (called a
relativization of ¢) having one free variable z, such that (w,(r)) E ¢[< z] if and only
if u = ¢, where u is the prefix of w of length r — 1. ¢[< x| is obtained from ¢ by
replacing all occurrences of Qui, where Q is a quantifier 3 or 3(@7) and y is a variable, by
Qy((y < x) A). Similarly, there is a formula @[> z] such that (w, (r)) E ¢[> x| if and
only if u = ¢, where u is the suffix of w of length |w| — 7. The following four facts are all
easy to verify:

(i) 0 = Ly, where ¢ = Jz(z <).

(1) A"\Ly = Ly; Ly N Ly = Lny.

(i4i) LgaLy = Ly, where x = Jz(d[< z] A Y[> 2] A Qo).

() (L, a, Ly, q,7) = Ly, where x = 3@z ($[< z] A P[> 2] A Qu).

It now follows by induction on the construction of L that if L € AC, then L = Ly for some
sentence ¢ € FAC.

12

1.6 Languages from formulas.

In this section we shall show the inclusions from left to right in Theorem 2. Our proof
uses the algebraic characterizations of the classes C(P) and AC(P) given in Proposition 1.
We say that a group G has exponent k if g* = 1 for all g € G. A group G is said to be
an ertension of a group H by a group K if H is a normal subgroup of G, and G/H is

isomorphic to k.

Lemma 3. Let a: A* - S, 8: A* - T, and n : S — T be homomorphisms of monoids,
where S and T are finite, and n o &« = 3. Suppose there exists k£ > 0 such that for every
u € A* for which B(u) is idempotent, a(u)*® = a(u)**l. Then every group in a(A*) is
isomorphic to a group in S(A*).

Proof. Let G C a(A*) be a group. Then H = n(G) is a group in 7. Let a(u) be in the kernel

k k+1

of the restriction of 1 to G. Then £(u) is idempotent, so by assumption a(u)* = a(u)

This implies that a(u) is the identity of G. Thus the restriction of n to G has a trivial

kernel, so G is isomorphic to 7(G).o
Lemma 4. Let o, 3,7, 5, T be as in Lemma 3. Let ¢ > 1. Suppose that for all u,x,y,v €
A* satisfying

B(uz) = B(u), B(zv) = B(v), B(uy) = B(w), B(yv) = B(v),

we have

a(uzyv) = a(uyzv)

and

a(uzv) = a(uv).

Then every group in a(A*) is an extension of an abelian group of exponent ¢ by a group

in T. Furthermore, if B(A*) is itself a group then a(A*) is a group.

Proof. Let G be a group in a(A*). Let u,v € A* be such that a(u) = a(v) is the identity
of G; and let x,y € A* be such that a(z), a(y) belong to the kernel of the restriction of 7
to G'. Then

Bluz) = B(u), B(zv) = B(v), Buy) = B(u), B(yv) = B(v),

so by assumption

13

and a(z)? is the identity of G. Thus the kernel of the restriction of 7 to G is an abelian

group of exponent gq.

Suppose further that T is a group of exponent r. Let y € A*, x = y", and u = v = 1. Then
B(z) = B(u) = B(v) is the identity of T, and thus a(y?") = a(z?) = (1) is the identity of
a(A*). Thus a(A*) is a group of exponent ¢r. o

A word structure (w, (r1,...,7%)) can be viewed in a natural manner as a word over the
extended alphabet A x 2{#1:®x} : The j** letter of this word is (a, {z; : 7; = j}), where
a is the jt* letter of w. With this convention, a formula ¢ whose free variables are in
{z1,...,zr} defines a language L, over this extended alphabet; Ly is the set of all word
structures that satisfy ¢. Thus we can, in particular, form the syntactic monoids of these
languages. It is important to note that not every word over this extended alphabet is a word
structure, and that the concatenation of two word structures is never a word structure,
unless the set of variables is empty. The word structures are those words in which each of
the variables z; appears exactly once within the second components of the letters of the

word.

We will often use a restricted version of the syntactic monoid and the syntactic morphism:
Let ¢ : A* — (A x 2{#1,--%:})* denote the homomorphism defined by mapping each a € A
to (a, #). Given L C (Ax2{@1@xh)* st vy = ppor: A* — M(L) and let N(L) = vy (A%).

We usually regard A as a subset of A x 2{#1:+%x} with the inclusion given by «.

To illustrate the distinction, let A = {a, b}, and let ¢ be the formula Q,z. Then ¢ defines a
language L over the extended alphabet A x 2{z}. L consists of all words over the extended
alphabet in which exactly one letter is (a, {z}), and every remaining letter is (a,) or (b, ().
The syntactic monoid of L is {1,s,0}, where s> = 0. The syntactic morphism gz maps
(a,0) and (b,0) to 1, (a,{z}) to s, and (b, {z}) to 0. However N (L) is the trivial monoid
1.

When we use this interpretation of word structures we must be careful to avoid the situation
where the same variable is used in two different contexts in a formula. (For example
Jz(x < y) A Jz(x > y).) While there is no problem in interpreting such a formula, the
induction in the proofs we give below will not work correctly. So we shall assume that
in our formulas no variable appears both bound and free, and each bound variable that

appears is in the scope of only one quantifier. Of course, there is no loss of generality

14

entailed in such an assumption, since we can replace any sentence by an equivalent one in
which this condition is met.

Lemma 5. Let ¢ be a formula with free variables in {x1,...,z5}. Then M (L) is finite.
Proof. Equivalently, we have to prove that Ly is a regular language. First observe that the
set S of all word structures over a fixed set of free variables is a regular language, since
we can check with a finite automaton that each variable occurs exactly once. Lg,, and
L,y are regular languages, since in the first case we can check with a finite automaton
that a word contains a letter of the form (a, P), with z € P, and in the second case that a
word contains an occurrence of the variable z before an occurrence of the variable y. We
obtain Lg,, and L, by intersecting the languages recognized by these automata with
S.If Ly and Ly, are regular languages, then Lyry = Ly N Ly and L4 = S\Ly are regular

languages, by the usual closure properties of regular languages.

Suppose now that Ly is a regular language recognized by a nondeterministic finite automa-

ton

M = (Q’ ?:7 F7 5)7

where () is the set of states, ¢ the initial state, F' the set of final states, and £ C @ x (A4 x
2{z1,-2k}) the set of edges. We will construct an automaton that recognizes L3z4. We
define

M = (Q X {07 1}’ (i,O),F X {1}75,)7

where £’ consists of two kinds of edges:

((g,u), (a, P), (¢, w)),

where u € {0,1}, z ¢ P, and (g, (a, P),q’') € £, and

((g,0), (a, P\{z}), (¢, 1)),

where z € P, and (g, (a,P),q") € £. A word w is accepted by this automaton if and
only if there is some way to adjoin = to a letter of w and obtain an element of Lg. Thus
the automaton recognizes L3.4, and consequently Lz,4 is regular. We treat the modular

quantifiers similarly: Let ¢ be the formula 3" z¢. Given M as above, we define

M =(Q x Zg, (4,0), F x {r},&").

15

Again &’ contains two kinds of edges: those of the first kind defined above, and edges of

the form

((g,w), (a, P\{z}), (¢, (u + 1) mod ¢)z)),
where v € Z4, x € P, and (q, (a, P),¢') € £. This automaton recognizes L. o

Lemma 6. Let ¢ be a formula with free variables in {z1,...,zr+1}. Let ¢ = Jxg41.
Then every group in N (L) is a quotient of a group in N(Ly).

Proof. Let S = N(Ly)xN(Lg), T = N(Lg), B =v1,, @ = (vi,,B) : A* = S. Suppose w €
A* and B(w) is idempotent. We claim a(w)® = a(w)*. Indeed, let u,v € (A x 2{#1Zk})*;
if uw3v € Ly, then there is a word obtained by adjoining zj41 to some letter of uw3v
that belongs to Ly. The resulting word still has a factor equal to w, and since f(w) is
idempotent, we may replace this occurrence of w by w? and still obtain a word in L.
Thus ww*v € L. Conversely if uw*v € Ly, then we obtain a word in Ly by adjoining
Tp41 to some letter. The resulting word still contains a factor equal to w?, which we
can replace by w and leave the resulting word in L. Thus uw®v € L. We have proved
vr,(w®) = v, (w?). Since f(w) = B(w?), we obtain a(w)® = a(w?) = a(w*) = a(w).
We may now apply Lemma 3 and conclude that every group in «(A*) is isomorphic to a
group in B(A*) = N(Lg). Now let G be a group in N(Ly). Then {a(w) : vr,(w) € G}
is a subsemigroup of a(A*) that has G as a quotient. By Lemma 5, this subsemigroup is
finite. It is easy to show that the smallest subsemigroup mapping onto G must itself be a

group in a(A*), and hence isomorphic to a group in N(Lgy).o

Lemma 7. Let ¢ be a formula with free variables in {z1,..., 241} Let ¢ = @) g1 0,
with ¢ > 1. Then every group in N(L,) is a quotient of an extension of an abelian group
of exponent r by a group in N(Ly). If N(Lg) is itself a group, then N(Ly) is a group.
Proof. Let S, T, «, 3 be as in the proof of Lemma 5. Suppose u,v,y,z € A* satisfy

Bluy) = Buz) = B(u), Blyv) = B(zv) = B(v).

Consider wyuyzvwsy, where wy,ws € (A X 2{‘”1"""Ek})*. Suppose that adjoining g1 to
a letter in this word yields a word in Ly. If the letter occurs in y, let y’ denote the
word obtained from y by the adjunction of ;1. We then have wiuy'zvws € Ly, whence
wiuy'vwy € Ly, and thus wyuzy'vws € Lg. We can argue similarly wherever else the letter
occurs. Thus there is a one-to-one correspondence between the letters in wyuyzvw, and
the letters in wyuzyvws for which adjoining zxy1 to the letter gives a word in Lg. This

shows

16

v, (uyz0) = v, (uzyo).

and consequently

a(uyzv) = a(uzyv).

Now consider wjuy?vws. Let y’ be obtained from y by adjoining k11 to some letter. Then
wiuy'y? tvwe € Ly if and only if wyuyy'y?~2vwy € Ly if and only if wiuy?™ y'vws € Ly.
It follows readily the number of letters in w;uy?vws for which adjoining xx41 to the letter
gives a word in Ly is congruent modulo ¢ to the number of such letters in wiuvws. Thus

wiuylvws € Ly if and only if wiuvws € Ly. So

VL, (uyTv) = VL, (uv),

and thus

a(uy?v) = a(uv).
We may now apply Lemma 4. The desired conclusion follows as in Lemma, 6. o

Lemma 8. (a) Let ¢1 and ¢2 be formulas with free variables in {z1,...,2%}. Let ¢ =
$1 A ¢pa. Then every group in N (L) is a quotient of a group in N (Lg,) x N(Lg,). If further
N(Lg,) and N(Lg,) are themselves groups, then N (L) is a group.

(b) Let ¢ be a formula with free variables in {x1,...,zx}. Then N(Ly) and N(L-g4) are
isomorphic.

Proof.

(a) Let w1, w2 € A*, and suppose v, (w1) = v, (w2) for i = 1,2. It follows directly
from the definition of the syntactic congruence that vy (w1) = vr, (ws). Thus v, factors

through the homomorphism

WLy, vL,,) (A x 20md) 5 N(Ly) x N(Lg,),
from which the desired conclusions follow.

(b) Let wi,ws € A* and suppose vr,(w1) = v, (wa). Let u,v € (4 x 2@,z }y* - and
suppose uwiv € L-g. Then, in particular, uw,v is a word structure, so uwqv is a word
structure. If uwsv = ¢ we would have uwiv = ¢, a contradiction. Thus uwyv € L_4. The
identical argument shows that uwsv € L_4 implies uw,v € L-4, s0 wy =L, W2, and thus

vy ,(w1) = vp_,(we). Symmetrically, vp_,(w1) = vp_,(wz) implies v, (w1) = v, (ws).

17

Note. For formulas ¢ with free variables, M (Ly) and M (L-4) are not, in general, isomor-
phic. For example, let ¢ = ((z < y) A (y < x)). Then Ly is the empty language, whose
syntactic monoid is trivial, but L_4 consists of all word structures in (A x 2{2¥})* and

thus has a nontrivial syntactic monoid.

Proof of Theorem 2. Let ¢ be a formula with free variables in {z1,...,z}. We claim that
for every group G in N(Lg), G is finite and solvable, and its cardinality divides a product
of the moduli of the modular quantifiers in ¢. We claim further that if all the quantifiers
in ¢ are modular quantifiers, then N(Lg) is a group. In the case where ¢ is a sentence,
these claims along with Proposition 1 give the Theorem.

We prove the claims by induction on the construction of ¢. In the case where ¢ is an
atomic formula, all words in A* are congruent under the syntactic congruence of Ly, and
consequently N(Ly) is trivial (and, in particular a group). Lemma 5 tells us that N(Ly)
will remain finite throughout all steps of the construction. Lemmas 6 and 7 show that the
required properties are preserved by the application of quantifiers, and Lemma 8 shows

that the required properties are preserved by boolean operations.o

2. w-languages

The results of Section 1 have natural counterparts in the domain of w-languages; that
is, sets of infinite sequences of letters from a finite alphabet A. In this section we give
a theorem, based on Theorem 2 above, that characterizes a class of regular w-languages,
analogous to the class AC. As before, the characterization is in terms of finite monoids,
language theory, and logic. We obtain similar characterizations for subclasses of these

languages defined by restricting the moduli with respect to which we count.

Regular w-languages were introduced by Biichi [8]. For a general discussion, see Thomas
[27]. Here we will just review the essential points. A“ denotes the set of all infinite
sequences over the alphabet A. If v € AT, then v* denotes the sequence vvv---.If L C AT,

then L“ denotes the subset of A consisting of all infinite sequences

WiwWsz =+ -,
where w; € L for all 1 > 1. We denote by lim L the subset of A“ consisting of all sequences
v such that infinitely many initial segments of v belong to L.

There are a number of equivalent definitions of regular subsets of A“; we shall use the
following one: L C A¥ is a regular w-language if and only if L is a finite union of sets of

the form L; LY, where Ly, Ly C A™ are regular languages. There is also a characterization

18

in terms of a notion of acceptance by finite automata (“Biichi automata”; see, for example,
[27]).

Let L C A“. The syntactic congruence of L, denoted ~y,, is a congruence on A* defined

as follows: x ~p, y if and only if

{(u,v,w) € A* x A* x AT :uzvw® € L} = {(u,v,w) € A* x A* x AT : uyvw® € L},

and

{(u,v) € A* x AT 1 u(zv)¥ € L} = {(u,v) € A* x AT s u(yv)* € L}.

The syntactic congruence was introduced in Arnold [2]. The quotient monoid A*/~y, is
called the syntactic monoid of L, and is denoted, as in the case of sets of finite words,

M(L). If L is a regular w-language, then M (L) is finite, although the converse is false.

Our logical formulas of Section 1 can be interpreted in infinite words. The only thing that
needs to be added is that we say a word structure satisfies 3" z¢(z) if and only if the
number of positions z satisfying ¢(x) is finite and congruent to » modulo ¢. In order to show
that every w-language defined by a formula is regular, one can use the automaton-theoretic
characterization of the regular w-languages, combined with a straightforward adaptation

of the constructions of Lemma 5.
Here is our theorem:
Theorem 9. Let P be a set of primes, and let L C A¥. The following are equivalent.

(a) L is a regular w-language, and every group in M(L) is solvable, and every prime
dividing the order of these groups is in P.

(b) L can be obtained from A% by boolean operations and left concatenation with languages

in AC(P).
(¢) L is the w-language defined by a sentence in FAC(P).

The case P = () was treated by Thomas [25]. Before proceeding to the proof, let us
remark why we do not get an analogous result for the w-languages defined by sentences of
FC(P): Let A = {a,b}, and let L C A“ be the set of sequences that contain finitely many

occurrences of the letter a. Then L is defined by the sentence

EI(Z’O)anx vV El(z’l)a:Qaa:.

19

The analogue to Theorem 2 would imply that M (L) is a group; however the ~p-classes
are b* and A*\b*, and thus M (L) has two elements, an identity and a zero, and is not a
group.

Proof of Theorem 9.

(a) = (b). It is proved by Arnold [2] that if L is a regular w-language whose syntactic
monoid has the form described, then L is a finite union of sets of the form L; L%, where
Ly, Ly C A* are regular languages such that every group in M (L) and M (L) is solvable,
with cardinality dividing a product of primes in P. Thus, by Proposition 1, Ly, Ly € AC.
It now follows from a result of Perrin [16] concerning regular w-languages whose syntactic
monoids belong to concatenation-closed varieties that L is a boolean combination of sets
of the form lim K, where K € AC. It remains to show that lim K can be constructed
in the manner described in part (b) of the theorem. Consider the set A“\ lim K. This
consists of all sequences that have either no prefix in K, or a longest prefix in K. The
set of sequences with no prefix in K is AY\K A%, which is constructed in the required
form. To treat the set of sequences with a longest prefix in K, consider the left quotients
v K = {w € A* : vw € K}, where v € A*. Define v; = vy if and only if v; 'K = v, ' K.
It is well known that recognizability of of K implies that = is an equivalence relation on
A* of finite index, and that K is a union of 2-classes. Let {v1,..., v} be representatives
of the =-classes contained in K; the classes themselves are denoted [v1],...,[vg]. The set

of sequences with a last prefix in K is

k

U4\ ((v; " K) 4%)).

i=1
The syntactic monoid of v;” 1K is a homomorphic image of the syntactic monoid of K,
and thus v; 'K € AC. (That is AC is closed under left quotients.) We can express the

equivalence class [v] in terms of the right quotients:

[v]:(N Ku_l)\(U (A*\K)u—l).

ucv—1K ugv—1K
Since K and A*\K are regular languages, they have only finitely many distinct right
quotients, and thus the infinite index sets for the above union and intersection can be
replaced by finite index sets. Since AC is closed under boolean combinations and right
quotients, each [v;] in in AC. It now follows that lim K can be expressed in the required

form.

(b) = (c). Assume L C A¥ has the form described in (b). If L = A% then L is defined by

20

Vo (z = x).

If K € AC(P) then by Theorem 2, K is the set of finite words defined by some ¢ € FAC(P).
Suppose L C A¥ is the w-language defined by some sentence v € FAC(P). We now
relativize ¢ and 9 as in 1.5, forming formulas ¢[< x| and 9[> x] with one free variable.
KL is thus the w-language defined by

Fa(P[< 2] A P[> 2]).
Thus the family of w-languages defined by formulas in FAC(P) is contains A% and is closed

under concatenation on the left with members of AC(P). Since it is obviously closed under

boolean operations, the desired result follows.

(¢) = (a). As in Section 1, we can view sets of infinite word structures as w-languages over
an extended alphabet, and define the restricted syntactic morphism and syntactic monoid
for such sets. The proof now essentially consists in verifying that Lemmas 5, 6, 7 and 8
remain true in this new context. We have already noted that the analogue of Lemma 5
holds: every w-language defined by a formula (possibly with free variables) is regular, and
thus has a finite syntactic monoid. The proof of Lemma 8 is unchanged. Let us note what
modifications are necessary in the proofs of Lemma 6 and 7.

As in Lemma 6, let ¢ = Azyy1¢. Let vy, (w) = vg, (w?). Now suppose uw3vy®” € Ly,. Then
we can adjoin w41 to a letter of this sequence and obtain a sequence in L. If this letter
occurs in one of the factors, u, v or w3, then we proceed just as in the proof of Lemma 6.

If the letter occurs in the factor y“, then we can write

u,w?),uymylyw c L¢,

thus

uw4vymy1yw c L¢,

SO

vwtvy® = vwtoy™tly® € Ly.

Similarly, suppose u(w®v)¥ € L. Then there is some letter in the the sequence to which
we can adjoin x4 and obtain a sequence in L. If the letter occurs in the factor u then
we proceed as in Lemma 6. If the letter occurs elsewhere (say, for example, in one of the

occurrences of v,) then we can write

21

u(wiv)™wv' (w3v)* € Ly.
We can apply m + 1 times the fact that w and w? are equivalent under vy, » and obtain

u(wv)™why' (wiv)* € Ly,

and once more to obtain

u(whv)™wv' (whv)* € L.
Thus u(w*v)¥ € Ly. The same sort of argument shows that vw*vy®, u(w*v)* € Ly, implies
uw3vy” € Ly and u(w3v)¥ € Ly, respectively.
We turn to the extension of Lemma 7. Keeping the same notations as in the proof of

Lemma 7, let

Bluy) = B(uz) = B(u), B(yv) = B(zv) = B(v),

and let w = wyuyzvwowy € Ly, where ¢ = El(q”")a:k+1¢. By definition, there are only
finitely many letters in w for which adjoining x4, gives a word in L,,. We can thus rewrite
w = wiuyzvwaws'wy, so that all the letters in question occur in the factor w;uyzvwawy'.
We can then prove as before that all the letters of w' = wyuzyvwsw§ for which adjoining
ZTr+1 gives a sequence in Ly occur in the factor wyuzyvwowy®, and that there is a one-to-
one correspondence between the sets of such letters in w and w’. A similar refactorization

is used to prove the other parts of the extension of Lemma, 7.

3. Connections With Circuit Complexity.

Recently Barrington and Thérien [6] demonstrated a close connection between the com-
putational capabilities of constant-depth families of circuits with unbounded fan-in, and
the classification of regular languages according to their syntactic monoids. The obvious
similarity between circuits and quantified logical formulas, coupled with our results con-
necting such formulas to the syntactic monoid, enables us to give a straightforward new

proof of their result.

For our purposes a circuit with n inputs is a directed acyclic graph with a single sink. Each
source node is labelled either x; or —x;, for some ¢ = 1,...,n. Other nodes are labelled
either AND, OR or MOD, ,., where 0 < r < q. The depth of the circuit is the length of

the longest path from a source to the sink, and the size is the number of nodes. Given

q,r

22

a sequence of n bits a; - --a, € {0,1}*, we assign a bit to each node, beginning with the
source nodes: A node labelled z; is assigned the bit a;, and a node labelled —z; is assigned
the value 1—a;. A node labelled AN D is assigned the conjunction of the values assigned to
its predecessors, and a node labelled OR is assigned the disjunction of the values assigned
to its predecessors. A node labelled MOD, , is assigned 1 if and only if the number of its
predecessors having the value 1 is congruent to » modulo ¢. The input string is accepted
if and only if the sink node is assigned the value 1. Ordinarily we consider families of
circuits, one for each input length n > 1. The resulting family of circuits thus recognizes
a language over {0,1}. An important problem in computational complexity theory is to
find the minimum size and depth of circuits required to recognize certain languages. Here
we restrict our attention to circuit families in which the depth is constant and the size is

bounded by a polynomial in the number of inputs.

An expression is a circuit whose underlying graph is a tree. Equivalently, expressions can
be defined inductively as follows: If 1 < i < n, x; and —z; are expressions. If Ey,..., F,,

are expressions, then

OR(E1,...,En)
AND(E4,...,En)

MOD,,(Ey, ..., E,)

are expressions. It is easy to show that a circuit of size s and depth d can be replaced by
an equivalent expression of size no more than s2¢ and depth d. In particular, a family of
circuits of constant depth and polynomial size yields a family of expressions of the same

depth and polynomial size.

A program with n inputs over a language L. C A* is a sequence of instructions

(7;170'171)1)7 ey (iraa'r7b’r‘)7

where for all j, 1 <4i; < j and a;j,b; € A. Given a string ¢;...c, € {0,1}", the program
emits the string dy---d, € A", where d; = a; if ¢;; = 1, and d; = b; if ¢;; = 0. We say
that the j** instruction of the program queries the i bit of the input. The input ¢; --- ¢y,
is accepted if and only if d;---d, € L. As before we consider families of programs, one
for each input length n. The resulting family recognizes a language S C {0,1}*. We are

particularly interested in the case where the programs in the family are over a fixed regular

23

language L, and the lengths of the programs are bounded by a polynomial in the input
length.

Here is the theorem of Barrington and Thérien:
Theorem 10. Let P be a set of primes. Let L C {0,1}*. The following are equivalent:

(a) L is recognized by a polynomial-size constant-depth family of circuits in which every

MOD,, gate has the same modulus g, where ¢ is a product of primes in P.

(b) L is recognized by a polynomial-length family of programs over a language L’ € AC(P).

Proof.

(a) = (b). As we saw above, we may assume that the polynomial-size constant-depth
family of circuits is a family of expressions. Let us say that the depth of a node in an
expression is the length of the longest path from the node to a source node. We may
assume that the expression is levelled in the sense that all predecessors of a node of depth
s+ 1 are nodes of depth s; indeed, if there is a predecessor node of depth s —k, with £ > 0,
then we may place a path of k¥ nodes labelled OR between the two nodes. Such leveling
preserves the overall depth of the expression and requires at worst a polynomial increase
in size.

We now write the expression in prefix form; that is, with each node preceding its pre-
decessor nodes, without commas or parentheses. In order to parse the resulting string
unambiguously, we affix to each node of depth > 0 a superscript indicating the depth.

Thus the expression

AND(OR(z1,~x2,23), MOD3 1(—z1,22))

is rewritten

AND? OR' z1 —z9 3 MOD%’l -r1 Zo.

Finally, given an assignment of binary values to the inputs x1,...x,, we replace the oc-
currences of x; and —x; in the prefix expression by their assigned values. Thus to an

expression and an input word we have associated a word over the alphabet
A={0,1}U{AND*:1<i<d}U{OR':1<i<d}U{MOD}, :1<i<d,0<r <q}.

(Here d is the depth of the expression.) Observe that the length of this word is bounded by
a polynomial in the length of the input. Let Cy denote the set of words in A* that result
from such expression-word pairs, where the expression has depth d. A word in A* is in Cy
if and only if the first letter has depth d, no other letter has depth d, and the successor
of each letter of depth ¢t > 0 is a letter of depth ¢t — 1. (Letters of depth 0—that is, the

24

bits 0 and 1-—may be followed by letters of any depth less than d.) It is easy to write a
first-order sentence ¢¢, that defines Cy.

Now let T,; denote the set of strings in Cy obtained from expression-word pairs in which
the expression accepts the word. (That is, where the expression evaluates to 1 when the
n bits of the word are substituted for the variables z,...,x, in the expression.) T; can
be defined inductively: Tp is just the singleton {1}. A word w is in T34 if and only if
it is in Ci11, and one of the following three conditions holds: (i) The first letter of w is
AN D™ and every maximal segment of w in Cy is in Ty; (ii) the first letter of w is OR!!
and some maximal segment of w in Cy is in Ty; (i) the first letter of w is MOD}H! for
some 7, and the number of maximal segments of w in C; that are also in T} is congruent
to » modulo ¢. Using the relativization technique of 1.5 it is easy to express in first order
logic ‘x is the start of a maximal segment in C}’: Either no position after z has a letter
of depth ¢ and ¢¢,[> z] holds, or there exists a y that is the first position after with a
letter of depth ¢, and ¢¢,[> z, < y] holds. Assuming, by the inductive hypothesis, that we
have a formula defining T;, we may use the same idea to write a formula that says that
z is the start of a maximal segment in Cy, and this segment is also in 7;. When we put
this together with the three conditions above we obtain a sentence defining T;;1 ;. Observe
that the modular quantifiers in this sentence all have modulus q. These can be replaced
by modular quantifiers with moduli in P. Thus T, € AC(P).

It remains to construct a program over Ty that, given an input word in {0, 1}", emits the
corresponding word in Cy. This is trivial to do, since the j** letter of the output word
depends upon at most one letter of the input word. Thus if the jt* letter of the output
word is of the type AND, OR or MOD, the j** instruction of the program can query any
bit of the input and emit the appropriate letter, independent of the value of the input bit.
If the jt* letter of the output word is 0 or 1, then it replaced z; or —z; in the original

expression. In this case the j* instruction of the program is (4, 1,0) or (3,0, 1).

(b) = (a). Now suppose L is accepted by a family of programs over L' € AC(P). By
Theorem 1, L’ is defined by a sentence ¢ of FAC(P). Beginning with the outermost

quantifiers, we replace every occurrence of

—E|J3’(/)
in ¢ by
Vo,
and every occurrence of
—3(@7) g4)

25

\/ 3@ gy,
r!#£r

The resulting sentence is equivalent to ¢, and the only occurrences of negation are at the

level of the atomic formulas. We may thus assume that ¢ has this form.

We again rewrite ¢, this time as an expression. Beginning with the outermost quantifiers,

we replace

Jzy(z)
by

OR(Y(1),...,9(n)),

Vaip(z)

by
AND((1),...,(n)),
and
3@ gop ()

by

MODqg(4(1),- .-, 9(n)).

We also replace 11 V2 by OR(11,19) and 11 Aps by AN D(1)1,1)2). Finally we replace the
atomic formulas: ¢ < j is replaced by OR(x1, —x1) if i < j is true and by AND(z1, 1)
otherwise. —(i < j) is treated similarly. To rewrite Q,i, we look at the i** instruction of
the program: (j,b,c). If b = a and ¢ # a we replace Q4% by z;. If b = ¢ = a we replace Q1
by OR(z1,—z1). The other two cases are treated similarly.

It is clear from the construction of this expression that it accepts precisely the words of

length n in L, has constant depth, and size bounded by a polynomial in n.o

We mention that the class of languages recognized by circuit families of polynomial size
and constant depth, with only AND and OR gates is called AC? in the literature in

26

computational complexity. If modular gates for a fixed modulus ¢q are added, the resulting
class of languages is denoted ACC(q). The union of the ACC(q) over all g is denoted ACC.

4. Related Research and Open Questions.

As we saw in Example (d) of Section 1, the framework of first-order logic with modular
quantifiers is not sufficient to define all regular languages. In the monograph of Mc-
Naughton and Papert [14] a number of extensions to first-order logic are considered. One
is the introduction of fixed unary predicates x = r (mod ¢). Let us denote by FOL the
class of languages definable by first-order sentences (by Theorem 2, this is the class AC(()
of Section 1), and by FOL¢ the class of languages definable using these new predicates. It
is easy to define the new predicates in terms of modular quantifiers, so FOL¢ is contained
in the class REG of regular languages. In fact FOLc lies strictly between FOL and AC.
The set of strings of even length is defined by the sentence

Vy(Vz(z <y) =y =0 (mod 2)),

and is thus in FOLe. However, its syntactic monoid is a nontrivial group, and thus by
Theorem 2, it is not in FOL. It is shown in Chapter 11 of [14], and also in Barrington, et.
al., [4] that the language PARITY of Example 1.4.b, consisting of all binary strings with
an even number of 1s, is not in FOLg, and thus FOLe is strictly contained in AC.

A second extension of first-order logic investigated by McNaughton and Papert is the use
of an auxiliary predicate U whose interpretation depends upon the given language. The
predicate U indicates which proper prefixes of a given word belong to the language under
consideration. Here we will use a formal definition of this predicate that is equivalent to
the one given by McNaughton and Papert, but somewhat simpler for the present purposes.

If L C A*, then the U-expansion of L consists of all strings
(a1,41) -+~ (ar,ir) € (A x {0, 1})"

such that a;---a, € L, and such that ¢; = 1 if and only if a;---a;_1 € L. Given a class
of languages £, we define Ly to be the class of languages whose U-expansions lie in L.
We note that the language PARITY belongs to FOLy : To see this, observe that a word
belongs to the U-expansion of PARITY if and only if (a) whenever 1 appears in the first
component of the 7*" letter, the second components of the i** and (i + 1)** letters are
different, and conversely; and (b) the first and second components of the last letter are

different. These conditions can easily be expressed by a first-order sentence.

27

The use of the U-predicate also takes us out of the class AC. Consider again the language
L of Example (d), of Section 1, with n = 5. The set of all strings that lead from the
initial state back to the initial state without visiting this state at an intermediate step
can be defined by a first-order sentence. This can be used to obtain a first-order sentence
that defines the U-expansion of L. On the other hand, the U-predicate keeps us within
the family of regular languages. Indeed, suppose that the U-expansion of a language L is
a regular language K. We can test whether w € L by nondeterministically guessing the
second component of its U-expansion, and then testing each prefix of the guess with an

automaton that recognizes K.

A summary of the language classes thus defined is given in the next theorem. FOLcy
denotes the class of languages defined using formulas in FOL¢o together with the U-

expansion.

Theorem 11. The inclusions among the classes FOL, FOLqc, FOLy, FOLcy, AC,
ACy and the class REG of all regular languages are given in the following diagram. Each

arrow indicates proper inclusion, and the absence of a path indicates incomparability.
FIGURE 2

Proof. All claims of inclusion (but not proper inclusion) are straightforward, in light of
the remarks above. Languages separating FOL, FOLc, FOLy, and FOLcy are given
in Section 11.4 of [14]. We have noted above that PARITY separates AC from FOLc,

so it remains to prove that the three rightmost inclusions in the diagram are strict.

As explained above, the language L of example (d) in Section 1 separates ACy from AC.
For the remaining two claims, it will be useful to introduce an endmarker letter #. When
this is appended to a word, the U-predicate becomes useless. It is easy to verify that
PARITY # separates ACy from FOLcy, since PARITY separates AC from FOLc.
Similarly, if L is the language separating ACy from AC cited above, then L# separates
ACy from REG.

It is shown in Chapter 11 of [14] that the classes FOLc and FOLcy are incomparable.
It remains to show that AC and FOLy are incomparable, and that AC and FOLgy are
incomparable. PARITY # belongs to AC but not to either of the other two classes; and
L+# (the same L as in the preceding paragraph) belongs to FOLy, and hence to FOLcy,
but not to AC. o

Since the appearance of an earlier version of this paper, the modular quantifiers introduced

here have been applied in a number of studies centering around circuit complexity. We

28

will mention a few of these applications here. Barrington, et. al., [4] and Straubing
[22] studied the question of what regular languages can be recognized by polynomial-size
constant-depth circuit families containing, respectively, boolean gates, modular gates, and
both boolean and modular gates. In the first instance they showed that the answer is
precisely the class FOLc defined above (answering in the process a question posed by
McNaughton and Papert). In the other two cases they showed that the answers are C and
AC if and only if certain conjectures in circuit complexity hold. It is an outstanding open
problem whether the class ACC' contains all languages recognizable by families of circuits
of depth O(logn) with AND and OR gates that have only two inputs. (In complexity-
theoretic terminology, the question is whether the classes ACC and NC! are equal.) If
this is true, then ACC contains all regular languages; if it is false (as most people believe),

then all the regular languages in ACC belong to AC.

Let us indicate how to pose these questions in a purely logical form. Suppose we allow
generalized first-order sentences in which the atomic formulas are QQ,x and any arbitrary
numerical predicates. (By a numerical predicate we mean any k-ary relation over the pos-
itive integers; that is, its truth depends only on the positions substituted for the variables,
and not on the letters that appear in those positions.) Thus z < y, x = 0 (mod 2),
‘r is prime’, are numerical predicates, while Q,x is not.) If we consider only ordinary
quantifiers, the class of languages defined is AC? (this is proved in Immerman [12]). If we
allow modular quantifiers as well, the class of languages defined is ACC. Thus the results
of [4] say that if a first-order sentence with arbitrary numerical predicates defines a regular
language, the formula can be rewritten so as to use only the predicates x < y and z =0
(mod g). The corresponding statement for modular quantifiers is an equivalent form of the
conjecture that ACC is strictly contained in NC*.

Barrington, Immerman and Straubing [5] consider sentences in which the only numerical
predicate is a binary predicate BIT (x,), meaning that the z*" bit in the binary expansion
of y is 1. The predicate x < y can be defined in terms of this predicate, so we obtain all the
regular languages discussed in this paper, as well as many nonregular ones. It is shown in
[5] that the families of languages defined by first-order sentences and generalized first-order

sentences using the BIT predicate are natural uniform versions of the complexity classes
AC°® and ACC.

Finally, suppose we introduce a new ‘majority quantifier’ M acting on k-tuples of variables,
so that

M.’I;]_./L'kqs

29

means that ¢(z1,...,2x) holds for at least half the k-tuples of positions. If we allow
arbitrary numerical predicates in our sentences, then by using such quantifiers we obtain
exactly the non-uniform circuit complexity class TC?, consisting of all languages recognized
by constant-depth, polynomial-size families of circuits containing majority gates (originally
described in [11]). If we use only the numerical predicate ‘<’ we obtain a natural uniform
version of this class ([5]). Even in the latter case we get some non-regular languages; for
example, it is easy to define the set of all bit strings in which the number of occurrences
of a exceeds the number of occurrences of b. It is not known whether ACC is properly
contained in TC?, and whether T'C? is properly contained in NC. The latter inclusion is
proper if and only if every regular language in TC° has a solvable syntactic monoid ([4]);
the former inclusion is equivalent to the question of whether we can simulate the majority

quantifier with modular quantifiers.

Acknowledgements. We would like to thank Pierre Péladeau and Marek Zawadowski,

who pointed out errors in the earlier version of this paper.

References.

1. M. Ajtai, X1 formulae on finite structures, Annals of Pure and Applied Logic 24 (1983),
1-48.

2.A. Arnold, A syntactic congruence for rational w-languages, Theoretical Computer Sci-
ence 39, (1985), 333-336.

3. D. Mix Barrington, Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC', J. Comp. Sys. Sci. 38, (1989) 150-164.

4.D. Mix Barrington, K. Compton, H. Straubing and D. Thérien, Regular Languages in
NC?Y, J. Comp. Syst. Sci. 44 (1992) 478-499.

5. D. Mix Barrington, N. Immerman and H. Straubing, On uniformity in NC*, J. Comp.
Syst. Sci. 41 (1990), 274-306.

6. D. Mix Barrington and D. Thérien, Finite monoids and the fine structure of NC!, J.
Assoc. Comp. Mach. 35, 941-952 (1988).

7. J. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlagen
Math. 6, (1960), 66-92.

8. J. Biichi, On a decision method in restricted second-order arithmetic,in E. Nagel, ed.,

Logic, Methodology and Philosophy of Science, Stanford University Press, 1962.

9. S. Eilenberg, Automata, Languages and Machines, vols. A &B, Academic Press, New
York, 1974-1976.

30

10. Y. Gurevich, Logic tailored for complexity, Lecture Notes in Mathematics 1104,
Springer, Berlin, 175-216.

11. A. Hajnal, W. Maass, P. Pudldk, M. Szegedy and G. Turadn, Threshold circuits of
bounded depth, Proc. 28th IEEE FOCS (1987), 99-110.

12.N. Immerman, Languages that capture complexity classes, SIAM J. Computing 16,
(1987), 760-778.

13. R. Ladner, Application of model-theoretic games to discrete linear orders and finite
automata, Information and Control 33, (1977), 281-303.

14. R. McNaughton and S. Papert, Counter-free Automata, MIT Press, Cambridge, Mass.,
1971.

15. J. Paris and C. Willkie, Counting problems in bounded arithmetic, Lecture Notes in
Mathematics 1130, Springer, Berlin, 317-340.

16. D. Perrin, Variétés de semigroupes et mots infinis, C. R. Acad. Sci. Paris 295, (1985),
595-598.

17. D. Perrin and J.E. Pin, First-order logic and star-free sets, J. Comp. Sys. Sci. 32,
(1986), 393-406.

18. J. E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

19. J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure and Applied Algebra
62, (1989), 227-268.

20. M. P. Schiitzenberger, On finite monoids having only trivial subgroups, Information
and Control 8, (1965), 190-194.

21. H. Straubing, Families of recognizable sets corresponding to certain varieties of finite
monoids, J. of Pure and Applied Algebra 15, (1979), 305-318.

22. H. Straubing, Constant-depth periodic circuits, International J. Algebra and Compu-
tation, 1 (1991), 49-87.

23. H. Straubing, D. Thérien and W. Thomas, Regular languages defined with generalized
quantifiers, Proc. 15th ICALP, Lecture Notes in Computer Science 317, 561-575 (1988).

24. D. Thérien, Classification of finite monoids: the language approach, Theoretical Com-
puter Science 14, (1981), 195-208.

25. W. Thomas, Star-free regular sets of w-sequences, Information and Control 42, (1979),
148-156.

26. W. Thomas, Classifying regular events in symbolic logic, J. Computer and System
Sciences 25, (1982), 360-376.

31

27. W. Thomas, Automata on infinite objects, in J. van Leeuwen, ed., Handbook of
Theoretical Computer Science, North-Holland, 1990.

28. P. Wolper, Temporal logic can be more expressive, Information and Control 56, (1983),
72-79.

32

