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In the late nineteen-eighties much of our research concerned the applica-
tion of semigroup-theoretic methods to automata and regular languages, and
the connection between computational complexity and this algebraic theory
of automata. It was during this period that we became aware of the work
of Wolfgang Thomas. Thomas had undertaken the study of concatenation
hierarchies of star-free regular languages—a subject close to our hearts— by
model-theoretic methods. He showed that the levels of the dot-depth hier-
archy corresponded precisely to level of the quantifier alternation hierarchy
within first-order logic[26], and applied Ehrenfeucht-Fräıssé games to prove
that the dot-depth hierarchy was strict [27], a result previously obtained by
semigroup-theoretic means [4, 18].

Finite model theory, a subject with which we’d had little prior acquain-
tance, suddenly appeared as a novel way to think about problems that we
had been studying for many years. We were privileged to have been intro-
duced to this field by so distinguished a practitioner as Wolfgang Thomas,
and to have then had the opportunity to work together with him. The study
of languages defined with modular quantifiers, the subject of the present
survey, began with this collaboration.

1 Generalized First-order Formulas over <

1.1 First-Order Logic and Star-free Sets

A little background first, about the ordinary kind of quantifier: Properties
of words over a finite alphabet Σ can be expressed in predicate logic by
interpreting variables as positions {0, 1, . . . , n − 1} in a string of length n,
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and including for each σ ∈ Σ a unary relation symbol Qσ, where Qσx is in-
terpreted to mean that the letter in position x is σ. The signature typically
includes other predicate symbols—“numerical predicates”—that are inde-
pendent of the letters that appear in the positions concerned, but instead
allow us to talk about relations between positions. It is quite interesting to
see what happens when we modify this part of the signature, but for now
we will suppose that there is just one such predicate symbol: <, denoting
the usual order on the positions.

A sentence of first-order logic thus defines a language in Σ∗, namely the
set of all strings that satisfy the sentence. For example, if Σ = {σ, τ}, then
the sentence

∃x(Qσx ∧ ¬∃y(y < x))

says that there is a position containing the letter x preceded by no other
position, and thus defines the language σΣ∗ of words whose first letter is σ.

Likewise the sentence

∃x(Qσx ∧ ¬∃y(y < x)) ∧ ∃x(Qτx ∧ ¬∃y(y > x))

∧ ∀x
(
Qτx↔ ∃y

(
Qσy ∧ (y < x)

∧ ∀z(z > y → ¬(z < x))
))

says that the first letter is σ, the last letter is τ, and that the positions
containing τ are those immediately following positions containing σ. This
defines the language (στ)∗.

Now (στ)∗ is a star-free subset of {σ, τ}∗. This means that it can be
defined by an extended regular expression in which arbitrary boolean oper-
ations are permitted along with concatenation, but in which the star oper-
ation is not used. This may not be obvious at first, since we have certainly
used the star to write it! But in fact this language is identical to(

τ∅c ∪∅cσ ∪∅c(σσ ∪ ττ)∅c
)c
,

where the superscript c denotes complementation in {σ, τ}∗.
McNaughton and Papert [13] showed that the star-free languages are

exactly those definable by first-order sentences over < . It is not hard to
see how to express the concatenation operation in first-order logic, so let
us concentrate instead on why the converse is true. Our account here is
inspired by the treatment in Thomas [26]. If w1, w2 ∈ Σ∗, and k ≥ 0, then
we write w1 ≡k w2 to mean that w1 and w2 satisfy all the same sentences
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of quantifier depth k. We write [w]k to denote the equivalence class of the
word w under this relation. One can now show that for any word v,

[v]k+1 =
⋂
∗

[v1]kσ[v2]k −
⋃
∗∗

[u1]kσ[u2]k.

Here, the index set ∗ in the intersection is the set of all triples (v1, σ, v2) such
that σ ∈ Σ and v = v1σv2, and the union over the set of all triples (u1, σ, u2)
such that v does not have a factorization v1σv2 with vi ≡k ui for i = 1, 2.
This can be established with a by-now routine argument using games. Since
≡k has finite index, the intersection is in fact a finite intersection. So the
above equation shows that for all k, each ≡k-class is a star-free language.
Since a language defined by a sentence of depth k is a finite union of such
classes, we get the desired result.

Observe that the argument outlined above makes no use of the other
characterization of star-free languages, namely Schützenberger’s Theorem
that these are exactly the languages whose syntactic monoids are aperiodic
(i.e., contain no nontrivial groups) [16]. But algebra and semigroups are not
completely absent, for the equivalences ≡k are congruences of finite index
on Σ∗, and the content of Schützenberger’s Theorem shows in essence that
the quotient monoids of these congruences generate all the finite aperiodic
monoids.

1.2 Counting Factorizations
Earlier (in our Ph.D. dissertations!) we had both studied a variant of the
concatenation operation that counted factorizations modulo some period:
Let L1, L2 ⊆ Σ∗, σ ∈ Σ, and 0 ≤ r < 1. Then we define (L1, σ, L2, r, q) to
be the set of words w for which the number of factorizations w = w1σw2 if
congruent to r modulo q.

In our discussions with Thomas we realized that the precise power of
this operation could be captured if one introduced modular quantifiers into
our logical languages:

∃r mod qxϕ(x)

is interpreted to mean ‘the number of positions x for which ϕ(x) holds’ is
congruent to r modulo q.

As an example, consider the sentence

∃0 mod 3x(Qτx ∧ ∃0 mod 2y(Qσy ∧ y < x)).

This defines the set of all strings in which the number of occurrences of τ
preceded by an even number of σ is divisible by 3. Observe that this par-
ticular sentence uses modular quantifers exclusively, and that it is possible
to rewrite it so that it only uses modular quantifiers of modulus 6.
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We were able to adapt the argument given above for star-free languages
to this new quantifer: Let us fix a modulus q, and let us redefine v1 ≡k v2
to mean that v1 and v2 satisfy the same sentences of quantifier depth k,
where we now allow modular quantifiers of modulus q as well as ordinary
quantifiers. Let L be defined by the sentence

∃r mod qxϕ(x),

where ϕ has depth k. We showed that L is a boolean combination of lan-
guages of the form (K,σ,K ′, s, q), whereK andK ′ are≡k-classes. The same
conclusion holds if we define ≡k in terms of modular quantifiers exclusively.

It readily follows that languages constructed using boolean operations
and ordinary concatenation together with the operations (L1, σ, L2, r, q) are
exactly those defined by sentences using both ordinary and modular quanti-
fiers, and that languages defined using the operations (L1, σ, L2, r, q) alone
are exactly those definable using only modular quantifiers.

Our real interest, however, stemmed from the fact that these language
classes could all be characterized effectively in semigroup-theoretic terms.
The example language defined above with quantifiers of modulus 2 and 3 was
derived from a descripiton of the set of words in the permutations σ = (1, 2)
and τ = (1, 2, 3) that evaluate to the identity in the symmetric group S3.
This works in general for finite solvable groups, for we can derive such
descriptions of word problems from the composition series for the groups.
It turns out that the languages definable using only modular quantifiers
are exactly the languages whose syntactic monoids are solvable groups, and
those definable using both modular and ordinary quantifiers are exactly
those whose syntactic monoids contain only solvable groups.

Let us denote by FO[<] the family of languages definable by first-order
sentences over <, by (FO + MODq)[<] those definable with both ordi-
nary first-order quantifiers and modular quantifiers of modulus q, and by
MODq[<] those definable using only modular quantifiers of modulus q. (We
assume all of this is with respect to a fixed finite alphabet Σ.)

Theorem 1.1. (Straubing, Thérien and Thomas [22]) MODq[<] is the
family of regular languages whose syntactic monoids are solvable groups of
cardinality dividing a power of q. (FO+MODq)[<] is the family of regular
languages L such that every group in M(L) is a solvable group of cardinality
dividing a power of q.

This second of these facts is far deeper than the first: While a solv-
able group by definition decomposes into a sequence of extensions by cyclic
groups, which generates the expression in terms of modular quantifiers, the
existence of a comparable decomposition for monoids that contain solvable
groups requires the use of the Krohn-Rhodes Theorem [12].
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The result of this is that we are able to effectively decide if a regular
language, given, let us say, by a regular expression or an automaton, can be
defined by a sentence involving modular quantifiers, and if so actually pro-
duce the sentence. For instance, suppose L is recognized by a deterministic
automaton with four states. We can explicitly write down a Krohn-Rhodes
decomposition of the monoid of all transformations on a four-element set
into factors that are either small aperiodic monoids or cyclic groups of or-
der two or three. This can be used to produce a sentence for L containing
ordinary quantifiers along with modular quantifiers of modulus 2 and 3.
In contrast, if the minimal DFA for L has five states, and if the transi-
tion monoid contains all the even permutations of the states, then no such
sentence for L is possible, irrespective of the moduli used.

1.3 Quantifiers and the Block Product
The two-sided decomposition theory for finite monoids developed by Rhodes
and Tilson [14] permits a deep understanding of the connection between
logic and algebra that underlies Theorem 1.1. Suppose that M and N are
two finite monoids. We write the operation in M additively, and its identity
as 0. This is not meant to imply that M is commuative, although in fact,
in the critical examples we consider below, M will be commutative. We
consider both a left action and a right action of N on M that are compatible
in the sense that

(nm)n′ = n(mn′)

for all m ∈M ; n, n′ ∈ N. We further suppose that these actions respect the
identities in both monoids, so that

n0 = 0n = 0

for all n ∈ N, and
1m = m1 = m

for all m ∈M. The bilateral semidirect product M ∗∗N with respect to these
actions is the monoid whose underlying set is M ×N and whose operation
is given by

(m1, n1)(m2, n2) = (m1n2 + n1m2, n1n2).

Rhodes and Tilson also define a block product M�N, a bilateral semidirect
product of MN×N and N that contains all the bilateral semidirect products
M ∗∗N.

The connection with quantification comes in when we consider languages
recognized by bilateral semidirect products M ∗∗N (or, what is the same
thing, block products M�N) in which M is either idempotent and com-
mutative, or an abelian group. This becomes clear if we try to compute
the image of a word w = σ1 · · ·σr under a homomorphism into the bilateral
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semidirect product. If we suppose that this morphism maps σi to (mi, ni),
then w is mapped to:

r∏
i=1

(mi, ni) =
( r∑
i=1

(i−1∏
j=1

nj
)
mi

( r∏
k=i+1

nk
)
,
∏
i=1r

ni

)
.

In other words, computation in M ∗∗N keeps track in M of the factoriza-
tions w = uσv, where the images of u and v are computed in N. It follows
that if M is idempotent and commutative, then a language recognized by
M ∗∗N is a boolean combination of languages of the form LσL′, where L,L′

are recognized by N ; and that if M is an abelian group of exponent q, then
any language recognized by M ∗∗N is a boolean combination of languages
of the form (L, σ, L′, r, q), where again L and L′ are recognized by L. As
mentioned above, these language operations can be captured by application
of ordinary and modular quantifiers.

Conversely, consider a language L defined by a sentence of the form

∃xϕ,

or
∃r mod qxϕ,

where ϕ is itself a formula with ordinary and modular quantifiers over the
signature {<}. We can view the formula ϕ, which has a single free variable x,
as defining a language Lϕ over the extended alphabet Σ×2{x}. Elements of
this language are words in which one of the positions is marked, and which
satisfy ϕ when the free variable is instantiated by the marked position. Like-
wise, we can view a formula with k free variables as definining a language
of marked words with k distinct marks, some of which may coincide. Let
µL : Σ∗ →M(L) be the syntactic morphism of L, and νL : A∗ →M(L′).

This is where the decomposition theory of Rhodes and Tilson comes
in. The relation νLµ

−1
L : M(L) → M(L′) is a relational morphism, and

its kernel category is idempotent and commutative (in the case of ordinary
quantifiers) or covered by an abelian group of exponent q (in the case of
modular quantifiers). This implies that M(L) is recognized by a block
product K�M(L′), where K is idempotent and commutative or an abelian
group of exponent q, depending on the quantifiers.

Theorem 1.1 follows from these observations and the Krohn-Rhodes The-
orem for block products: The solvable groups of order dividing a power of
q for the smallest variety of finite monoids closed under block product and
containing all the abelian groups of exponent q, and all the idempotent and
commutative monoids. This is the approach taken in the journal version of
our paper with Wolfgang Thomas [23], and in Straubing [19], which con-
siders a large assortment of regular language classes defined with modular
quantifiers.
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2 Circuits

2.1 Constant-depth Circuits and the ACC0 Problem
Why study modular quantifiers in the first place? To be frank, when we
began our work we did not have a particularly compelling answer to this
question! Modular counting of factorizations was an instance of an oper-
ation that happened to be easy to describe, but not particularly easy to
understand, which we were able to analyze completely with our new alge-
braic methods.

But, as sometimes happens when you are lucky, we subsequently found
a very good reason to be interested in these matters. This came from
computational complexity.

A circuit with n inputs is a directed acyclic graph, and in our circuits we
will require that there be a single sink node. Each source node is labeled by
a variable xi or its negation ¬xi, and each non-source node of in-degree r
by a function f : {0, 1}r → {0, 1}. Initially we will just use the r-ary AND
and OR functions, corresponding to standard logic gates, but later we will
play around with the gate type.

The circuit computes as follows: Given a bit string a1 · · · an, place ai
at each source node labeled xi, ¬ai at each source node labeled ¬xi, and
recursively compute a bit value for each non-source node: If the entering
edges of a node labeled f connect to nodes with bit values b1, . . . , br, then
the node will get the value f(b1, . . . , br). (In all of our examples the gate
functions f are symmetric, so we needn’t worry about ordering the incoming
edges to a node.) The input is accepted if the bit value assigned to the sink
node is 1, and rejected otherwise.

A circuit family with one circuit for each positive input length n thus
recognizes a language L ⊆ {0, 1}∗. If the circuits in the family contain only
AND and OR gates, the depth of the circuits in the family (the length of
the longest path from an input to the sink) is bounded by a constant, and
the size (the number of nodes) of the nth circuit in the family is bounded
by nk for some constant k, then the language is said to belong to the class
AC0.

AC0 contains the set of all strings of the form uv, where |u| = |v| and
the integer with binary representation u is greater than the integer with
binary representation v. Indeed, we can write this circuit explicitly as

n∨
j=1

(∧
i<j

(
(xi ∧ xi+n) ∨ (¬xi ∧ ¬xi+n) ∧ xj ∧ ¬xj+n

))
.

If we were to allow multiple outputs, then we could use the same strategy
to perform binary addition of two n-bit numbers in depth 3 and size nO(1).
AC0 contains every star-free regular language in {0, 1}∗, and in fact every
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star-free regular language over any finite alphabet Σ, provided we adopt a
fixed-length encoding of letters of Σ by bit strings.

Let us contrast AC0 with another circuit complexity class, this one called
NC1. NC1 also consists of polynomial-size families of circuits with AND
and OR gates, but we allow the depth of the circuits to grow logarithmically
(i.e., the depth of the nth circuit is O(log n)) and we require every node to
have in-degree 2. NC1 contains every regular language. If we were to
allow multiple outputs, then we could multiply two n-bit numbers or add n
n-bit numbers [5] and even multiply n n-bit numbers and perform integer
division [3].

The natural question in computational complexity is whether one model
is really computationally more powerful than another. It is easy to see that
AC0 is contained in NC1. Can we really do more with logarithmic-depth
circuits?

Furst, Saxe and Sipser [6] showed that, indeed, the language PARITY,
consisting of all bit strings with an even number of 1’s, requires superpolynomial-
size circuit families of constant depth, and thus is not in AC0. The same
argument shows that for any q > 1, the set of bit strings in which the num-
ber of 1’s is divisible by q is not in AC0, and a reduction argument shows
that we cannot do such things as multiply two integers in multiple-output
AC0.

We can try to boost the power of the constant-depth model by adding
things like PARITY as a kind of oracle gate. More formally, we let q > 1
and consider the functions fr : {0, 1}r → {0, 1} where fr(a1, . . . , ar) = 1 if
and only if a1 + · · ·+ ar is divisible by q. We call such a function a MODq

gate. ACC0(q) is the family of languages recognized by constant-depth
polynomial-size families of circuits that include AND, OR and MODq

gates. ACC0 is the union of the classes ACC0(q) over all q > 0.
The definitive result onACC0 is the following theorem of Smolensky [17],

which contains the result of Furst-Saxe and Sipser as a special case.

Theorem 2.1. Let p and q be distinct primes, and k > 0. The the set Lp
of bit strings in which the number of 1’s is divisible by p is not in ACC0(q).

But that’s not really definitive enough! It tells us that we cannot count,
say, modulo 7 in ACC0(8), or ACC0(25), but tells us nothing about whether
we can do this in ACC0(6), because 6 has two distinct prime factors. We
expect that it cannot be done in ACC0(6), and more generally:

Conjecture 2.2. (a) Let q > 1. If p is a prime that does not divide q, then
ACC0(q) does not contain Lp.
(b) ACC0 is properly contained in NC1.

We know very little about what occurs when the modulus of the modular
gates is not a prime power. Not only has this problem remained unsolved
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for twenty years, but it stands, in a sense, at the very frontier of current
knowledge about computational complexity. We do not know how to sep-
arate NC1 from ACC0, but we also do not know if there is a language
in LOGSPACE that is not in NC1, nor a language in P that is not in
LOGSPACE, nor, of course, a language in NP that is not in P. It is en-
tirely consistent with the current state of our knowledge that ACC0 contains
an NP -complete problem.

2.2 Circuits and Predicate Logic
There is a close connection between the constant-depth circuit families we
described above, and formulas of first-order logic used to define languages,
first observed by Gurevich and Lewis [7], and independently by Immer-
man [8].

We illustrate this with an example. Let us return to the language

Lcomp = {uv : |u| = |v|, (u)2 > (v)2},

where (w)2 denotes the integer whose binary representation is u. In the last
section we gave a description of a circuit family recognizing this language.

If we are allowed to read u and v in parallel then we could consider the
pair (u, v) as a string of length n = |u| = |v| over the four-letter alphabet
{0, 1}×{0, 1}.With this interpretation, Lcomp is a star-free regular language,
defined by the first-order sentence

∃z1(Q(1,0)z1 ∧ ∀z2((z2 < z1)→ Q(1,1)z2 ∨Q(0,0)z2)).

Of course, positions in this string encode pairs of positions in uv, and we
can translate this into a sentence that talks directly about uv:

∃x1∃y1(Q1x1 ∧ Q0y1 ∧ (y1 = x1 + n)
∧ ∀x2∀y2(x2 < x1 ∧ y2 = x2 + n→

(Q1x2 ∧Q1y2) ∨ (Q0x2 ∧Q1y2)))

The result is a first-order sentence that defines the original language Lcomp.
Observe that we have had to introduce a new numerical predicate y = x+n
which says that x and y occupy corresponding positions in the two halves
of uv.

Conversely, we can ‘unroll’ this first-order formula and obtain expres-
sions for a circuit family recognizing Lcomp. These will be much like the
ones that we saw in the last section.

This sort of argument works in general: if we denote by N the family of
all numerical predicates, then AC0 is exactly the same as the class FO[N ] of
languages defined by first-order sentences with no restriction on numerical
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predicates. The identical argument works if we permit modular quantifiers
of modulus q in our formulas and MODq gates in our circuits. The details
are given in Barrington, et. al.[2].

As a result, we have:

Theorem 2.3.
ACC0(q) = (FO +MODq)[N ].

2.3 The Connection with Regular Languages

A consequence of the theorem of Furst, Saxe and Sipser cited above, noted
in [2], is that the regular languages in AC0 are precisely those definable by
first-order sentences in which, in addition to the order relation, there are
predicates ≡t for equivalence of positions modulo t, for all positive integers
t. In [19], the numerical predicates that are definable by first-order formulas
in < and ≡t are called regular numerical predicates, since this is in fact the
largest class of numerical predicates that one can introduce into sentences
and still guarantee that every definable language is regular.We denote by R
this class of numerical predicates.

The languages definable in this way are not quite star-free, since they
include, in particular, the languages ({0, 1}t)∗ of strings of length divisible
by t. But they are almost star-free in the sense that they are the smallest
class containing the star-free languages and the languages ({0, 1}t)∗ that
is closed under boolean operations and concatenation. If we combine this
with the logical characterization of AC0, we obtain:

Theorem 2.4. The family of regular languages in FO[N ] is FO[R].

It is therefore reasonable to conjecture

Conjecture 2.5. Let q > 0. The family of regular languages in (FO +
MODq)[N ] is (FO +MODq)[R].

In fact, this is equivalent to our previous Conjecture 2.2. The principal
reason for this equivalence is the fact, discovered by Barrington [1], that lan-
guages whose syntactic monoids contain a nonsolvable group are complete
for NC1 under a particularly restrictive kind of reduction: a consequence
is that as soon as (FO + MODq)[N ] contains such a regular language, it
contains all of NC1.

We have thus reduced our conjectured solution to one of the outstanding
open problems in computational complexity to a purely model-theoretic
question about the definability of regular languages in an extension of first-
order logic. It makes sense to look for a model-theoretic explanation of the
phenomenon. Unfortunately, the only proof we that we possess for the pure
first-order case, Theorem 2.4 requires the lower bounds results from circuit
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complexity. And, as we have already remarked, none of the methods for
proving these bounds generalizes to treat ACC0.

There has been some small progress on the question. Roy and Straub-
ing [15] use model-theoretic collapse results to prove Conjecture 2.5 when
the only numerical predicate allowed is the addition of positions. They also
show the conjecture holds for sentences that contain only the order rela-
tion and arbitrary monadic numerical predicates. However, as they discuss,
there are fundamental obstacles to generalizing these methods.

3 Sentences with a Bounded Number of Variables

3.1 Two- and Three-Variable First-Order Sentences
An occurrence of a variable x in a sentence can lie within the scope of
several different quantifiers that use this variable. It is only the innermost
such quantifer that binds this occurrence of x. Thus it is possible to re-use
variables within a sentence. For instance, the sentence

∃x(Qσx ∧ ∃y(y < x ∧Qτy ∧ ∃x(x < y ∧Qτx ∧ ∃y(y < x ∧Qσy))))

defines the set of all strings that have a subsequence σττσ.
It is known that every first-order sentence over < is equivalent to one in

which only three variables are used. (Kamp [10], Immerman and Kozen [9]).
Thérien and Wilke showed that the languages definable by two-variable sen-
tences could be characterized in terms of the syntactic monoid [25]: These
are the languages whose syntactic monoids belong the the variety DA. There
are many equivalent definitions of this class of monoids, but here is one we
will find most useful: Two elements m and n of a monoid M are said to be
J -equivalent if MmM = MnM. A monoid is in DA if it is aperiodic, and
if every element J -equivalent to an idempotent is itself idempotent.

The language (στ)∗ that we discussed earlier serves as a good example
that separates two-variable definability from first-order definability. It is
quite plausible that we cannot define this language without referring to one
position being between two others, and that this will require three variables
to do. The proof is that the words σ and στσ represent the same elements
of the syntactic monoid of this language, and so σ and στ are J -equivalent,
but the second of these is idempotent, while the first is not.

3.2 Modular Quantifiers with a Bounded Number of Variables
In [21] we investigated what happens when we bound the number of variables
in sentences that contain modular quantifiers. If modular quantifiers are
used exclusively, then every sentence is equivalent to one in which only
two variables are used. When both modular and ordinary quantifiers are
allowed, then three variables are again sufficient to define all the languages
in (FO+MOD)[<]. An interesting phenomenon occurs in the two-variable
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case. Consider again the language (στ)∗ in the example above. It is defined
by a sentence that says the length of the string is even, and that a position
contains τ if and only if it is an odd-numbered position:

∃0 mod 2x(x = x) ∧ ∀x(Qτx↔ ∃0 mod 2y(y < x)).

What is remarkable here is that modular quantifiers are not required at all
to define this language, but allowing them leads to a more economical (in
terms of the number of variables) specification. Furthermore, appearances
to the contrary, the modulus used is irrelevant. It is possible to define the
same language with two variables using modular quantifiers of modulus 3,
a puzzle we leave for the reader.

Let us denote by (FO + MOD)2[<] the family of languages in (FO +
MOD)[<] definable by a two-variable sentence. We further denote by
Σ2[MOD] the family of languages defined by sentences over < in which
there is a block of existential quantifiers, followed by a block of universal
quantifiers, followed by a formula in which only modular quantifiers appear.
The family Π2[MOD] is defined similarly. We showed:

Theorem 3.1. Let L ⊆ Σ∗. The following are equivalent
(a) L ∈ (FO +MOD)2[<].
(b) L ∈ Σ2[MOD] ∩Π2[MOD].
(c) The syntactic monoid M(L) divides a wreath product M ◦G, where M ∈
DA and G is a solvable group. (That is, M(L) belongs to the pseudovariety
DA ∗Gsol.)

Interestingly, we do not know how to determine effectively if a given
finite monoid belongs to DA ∗Gsol. The problem is equivalent to deter-
mining whether a set of partial one-to-one functions on a finite set X can
be extended to a solvable permutation group on a larger set Y. We refer
the reader to [21] for a discussion of this problem, as well as an apparent
connection to computational complexity; and also to [20], where we give a
different proof of the equivalence of (a) and (c) above, based on the block
product.

On the other hand, we do possess an effective test for whether a given
finite monoid M divides a wreath product of a monoid in DA and a finite
group (which may not be solvable): If e and f are J -equivalent idempotents
of M, and ef lies in the same J -class, then ef is itself idempotent. To
see how this criterion works in an example, consider the language L =
(σ+τ)∗σσ(σ+τ)∗ of all strings over {σ, τ} in which there are two consecutive
occurrences of σ. Since τ and τστ are equivalent in M(L), as are σ and
στσ, we conclude that σ, τ, στ and τσ are in the same J -class. Of these,
all but σ are idempotent. The condition is then violated by choosing e =
στ and f = τσ, since the product ef is equal to the non-idempotent σ.
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We conclude that this language requires three variables to define, even if
modular quantifiers are permitted. Observe how this purely model-theoretic
conclusion, which might be difficult to obtain otherwise, follows from a
relatively simple calculation in the minimal automaton of L.

3.3 The placement of the modular quantifiers, and more circuit
complexity

An important element in the proof of Theorem 3.1 above is a kind of normal
form for two-variable sentences over < containing modular quantifiers: Ev-
ery sentence of (FO+MOD)2[<] is equivalent to one in which an ordinary
quantifier never appears within the scope of a modular quantifier.

We therefore would expect the expressive power of two-variable logic to
decrease if we require instead that modular quantifiers not appear inside the
scope of other quantifiers. Tesson and Thérien [24] showed that in this case,
the syntactic monoids of the languages defined are in the pseudovariety DO
of monoids in which every regular J -class (i.e., every J -class that contains
an idempotent) is an orthodox semigroup–that is, a semigroup in which the
product of two idempotents is idempotent. More precisely, they show:

Theorem 3.2. A language L is definable by a two-variable sentence over
< in which no modular quantifier appears within the scope of an ordinary
quantifier if and only if M(L) ∈ DO and every group in M(L) is solvable.

Furthermore, L is definable by such a sentence in which no modular
quantifier appears within the scope of another quantifier if and only if
M(L) ∈ DO and every group in M(L) is abelian.

Let us illustrate this theorem with two examples. As already noted,
our canonical example (στ)∗ has a syntactic monoid in which the J -class
containing the idempotents στ and τσ is not a subsemigroup. Thus this
language cannot be defined by a two-variable sentence in which the modular
quantifiers appear outside the ordinary quantifiers.

Second, consider the language consisting of words over {σ, τ}, of the
form wτσk, where k ≥ 0, and w contains an even number of occurrences of
σ. This is defined by the sentence

∃0 mod 2x(Qσx ∧ ∃y(x < y ∧Qτy),

in which the modular quantifier appears outside the ordinary quantifier.
The underlying set of the syntactic monoid M is

Z2 ∪ (Z2 × Z2).

Words of the form σi are map to the element i mod 2. Words of the form
wτσk, where w contains j occurrences of σ are mapped to (j mod 2, k mod
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2). The multiplication in M is given by

i · j = (i+ j) mod 2,

i · (j, k) = ((i+ j) mod 2, k),

(j, k) · i = (j, (k + i) mod 2),

(j, k)(j′, k′) = ((j + k + j′) mod 2, k′).

The two J -classes have underlying sets Z2 itself, and (Z2 × Z2) and the
idempotents are 0,(0,0) and (1,1). Observe that this monoid is itself an
orthodox semigroup.

Once again, there is a connection to computational complexity: Koucky,
et.al. [11] show that the languages whose syntactic monoids are in DO and
contain only abelian groups are precisely the regular languages recognized
by ACC0 circuits with only a linear number of wires.

4 Conclusion

Problems about the expressive power of modular quantifiers with unre-
stricted numerical predicates lie at the very edge of current knowledge about
computational complexity. In all likeliehood, we are a long way from solving
them. We have, however, been able to apply algebraic methods to obtain
a thorough understanding of what happens when we use regular numer-
ical predicates. This has led to large array of results that are deep and
interesting in their own right, and provides valuable intuition about what
is probably going on in the elusive general case.
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