LOGICS FOR REGULAR LANGUAGES, FINITE MONOIDS, AND
CIRCUIT COMPLEXITY

H. STRAUBING

Computer Science Department
Boston College

Chestnut Hill, Mass.

U.S.A. 02167

D. THERIEN

School of Computer Science
Mc@Gill University
Montréal, Québec

Canada H3A 2K6

and

W. THOMAS

Institut fir Informatik und Praktische Mathematik
Christian-Albrechts- Universitat zu Kiel

D-24098 Kiel

Germany

Abstract. This paper is an introduction to the definability theory of regular sets of words (reg-
ular languages), in which definability in formal logic, the algebraic classification via the notion
of syntactic monoid, and recognizability by small-depth boolean circuits are connected. First,
the description of the regular and the star-free languages in terms of monadic second-order logic
and first-order logic over word models is reviewed. The characterization of first-order definable
languages by aperiodic monoids, originally due to Schiitzenberger and McNaughton, is established
using the block product decomposition of finite monoids. Then the framework of circuit complexity
theory is introduced, focussing on the circuit complexity class NC! and several subclasses (such
as AC?, ACCP, CCY). Starting from Barrington’s Theorem, characterizations of these classes by
polynomial length programs over finite monoids (from appropriate monoid varieties) are presented.
Finally, the logical approach is taken up again by a description of the considered subclasses of NC!
in terms of first-order formulas where nonperiodic numerical predicates are admitted.

The survey addresses readers who are familiar with the fundamentals of semigroup theory.
Other prerequisites from formal language theory, logic, and complexity theory are shortly recalled.

Key words: Regular languages, star-free languages, first-order logic, monadic second-order logic,
modular quantifiers, syntactic monoid, aperiodic monoid, solvable monoid, block product, monoid
decomposition, circuit complexity, small-depth circuits, programs over finite monoids.

1. Introduction

In the sixties, the theory of regular languages developed from two principal sources:
First, the notion of syntactic monoid opened the possibility of studying regular lan-
guages and their properties in the framework of semigroup theory. A basis of this
approach is Eilenberg’s Variety Theorem which sets up a correspondence between
classes of regular languages (respecting certain closure properties) and pseudovari-

2 H. STRAUBING ET AL.

eties of finite monoids. A second source was the view that regular languages are the
behaviors of finite automata and that these behaviors can be defined naturally in cer-
tain systems of symbolic logic. Biichi and Elgot showed that the system of monadic
second-order logic characterizes the expressive power of finite automata (and thus
the class of regular languages). Both aspects were connected in a line of research
opened by Schiitzenberger and McNaughton, and it was subsequently shown that
several sublogics of monadic second-order logic, notably systems of first-order logic,
correspond to special properties of syntactic monoids.

In the past ten years, surprising connections between this field and the complexity
theory of boolean circuits were discovered. The principal aim in this theory is to
evaluate the computational power of boolean circuits in terms of their size, depth,
and the types of gates used in their construction. Circuit families of particular
interest are those with circuits of small depth and of polynomial size (i.e., with
polynomially many gates in the number of input ports), consisting of AND- and
OR-gates and possibly some generalizations of these gates. A family of circuits
which contains one circuit for each possible number of input ports can be viewed as
a definition of a formal language (to which a 0-1-word belongs if it causes output 1
in the circuit with the appropriate number of input ports). Restrictions in the size
and depth of circuits thus constitute corresponding classes of formal languages, and
these in turn have been characterized by suitable classes of finite monoids or certain
logical systems. As a result, all the different aspects of definability—the algebraic,
the logical, and the complexity theoretic one—have now been merged into a unified
and appealing theory.

The present lecture notes give an introduction to this rapidly developing field
and survey the most important results. In Section 2, we shall present the logical
framework for the definition of regular languages and introduce some important
specializations. Section 3 is devoted to the characterization of classes of regular
languages in terms of the corresponding (varieties of) syntactic monoids. In Section
4, a short introduction to circuit complexity theory is given, together with a survey of
the algebraic description of circuit complexity classes (based on “polynomial length
programs over finite monoids”). Finally, in Section 5, the logical approach is taken
up again; here extensions of the logical systems of the first section are used to
describe circuit complexity classes.

While the necessary terminology from formal language theory, logic and circuit
theory will be shortly recalled, the reader is assumed to have basic knowledge of
semigroup theory.

For a more detailed exposition of the material see the forthcoming monograph
[29].

2. Logical Description of Regular Languages

2.1. REGULAR LANGUAGES AND MONADIC SECOND-ORDER LOGIC

Let us first recall the definiton of regular languages in terms of regular expressions
and finite automata. Regular expressions over the finite alphabet A are the expres-
sions built up from the symbols a in A (denoting the respective singletons {a}), 0
(denoting the empty language), and € (denoting the singleton containing the empty

LOGICS, MONOIDS, AND CIRCUITS 3

word) by means of the operations + (for union), - (for concatenation of languages),
and the Kleene star * (for the iteration of concatenation). Conventions on bracketing
and omission of the concatenation dot are assumed as usual, and often we do not
distinguish formally between expressions and denoted languages. So, for instance,
we speak of the regular language

Lo = a*ba(a + b)*

over the alphabet A = {a, b}, which contains all words that start with a sequence of
letters a followed by a segment ba.

A (nondeterministic) finite automaton is a structure 4 = (Q, 4,1, A, F) with
a finite set () of “states”, an “initital state” ¢ € @), a “transition relation” A C
Q xAxQ,and aset FF CQ of “final states”. A word w = ay ...a, is accepted by

A if there is a state sequence (a “successful run”) py, ..., ppn,Pnt1 such that
- b1 =14,
- (pi,aipiy1) €Afori=1,...,n,
- pnp1 €F.

The language recognized by A consists of the words over A accepted by A. Any finite
automaton can be converted to a deterministic one (where a function : @ x X — @
replaces the relation A) recognizing the same language. By Kleene’s Theorem, the
languages definable by regular expressions and those recognizable by finite automata
coincide. For example, the language Lo defined by the above mentioned regular
expression is recognized by the finite automaton with the states 1,2, 3, initial state
1, final state set {3}, and the transitions (1,b,2), (2,a,3) as well as (1,a,1), (3,q,3),
and (3,b,3) (see Figure).

a a,b

A natural alternative for the description of formal languages is to express prop-
erties of words in first-order logic. Here one uses variables z,y, ... that range over
positions of letters in a word, and uses formulas such as Q,r and xSy to express
the conditions “position x carries letter a”, “position z has position y as successor”,
respectively. Thus, the language Lo is defined over the alphabet A = {a,b} by the
formula

o : JxIY(Qez AxSY A Quy ANV2(2 < z = Q42)).

More precisely, we identify a word w = a; .. .a, over A with the corresponding word
model, namely the relational structure

w=({1,...,n},5,<,(Qc)cca)

where {1,...,n} is the set of “positions”, S and < are the usual successor relation
and order relation on {1,...,n}, and Q. = {i € {1,...,n} | a; = ¢}. The predicates
S and <, which only depend on the length of w, are called numerical predicates, while
the unary predicates Q. are letter predicates (coding which positions carry which
letters). The corresponding first-order language has variables z,y,z2,..., 21,2, ...

4 H. STRAUBING ET AL.

ranging over the positions in word models, and is built up from atomic formulas of
the form

z=y, Sy, <y, Q. (for a € A)

by means of the usual connectives -, A,V,—, <> and the quantifiers 3 and V. If
T1,...,Tn are prositions in {1,...,n} and ¢(z1,...,2,) is a formula with at most
Z1,...,%n occurring free in ¢, then (w,ry,...,r,) E ©(21,...,Z,) means that ¢ is
satisfied in w under the mentioned interpretation for S and < and with ry,...,7r,
as interpretation of x1,...,T,, respectively. A sentence is a formula without free
variables. The language defined by the sentence ¢ is

Lip) = {w € 4" |w F ¢}.

Thus, L(po) = Lo. Let us denote by FO[S, <] the class of languages definable by
first-order sentences of this form. Similarly, FO[S] and FO[<] indicate the classes
of languages defined by first-order sentences with S, resp. <, as the only numerical
predicate besides equality.

In defining word properties, it is often convenient to use constants min and maz
for the first and last positions of a word. In the sequel we shall allow these constants
in order to abbreviate notation. For example, the formulas Q,min and £Smax are
abbreviations for 3z(Q,z A —Jy ySz) and Iz(xSz A—-Jy 2Sy), respectively. Also the
use of S could be eliminated via a definition in terms of <, replacing xSy by

r<yA-Iz(z<zAz<y).

Hence we have FO[S, <] = FO[<]. On the other hand, we shall see later that FO[S]
forms a proper subclass of FO[<].

We now extend the logical formalism by second-order variables X,Y,... Xq,...,
which range over sets of positions, together with corresponding atomic formulas
Xz, Xy,.... Since sets are “monadic second-order objects” , in contrast to relations
of higher arity that are polyadic second-order objects, the system is called monadic
second-order logic (over the signature with the relation symbols S, <, @,). Note that
in this logic, the order relation < becomes definable in terms of successor S: We
have (over word models) that z < y is satisfied iff

=y AVX(Xz AV2VZ' (X2 A 2582 — X2') — Xy).

Since z = y is also definable by VX (Xz < Xy), the class M SO[S] of languages
definable in monadic second-order logic with S as only numerical predicate is the
class of languages definable by monadic second-order sentences including = and <.
Altogether we obtain

FO[S] C FO[<] C MSOI[S].

The key result connecting finite automata with logic states that MSO[S] is the class
of regular languages.

Theorem 2.1 (Biichi [10], Elgot [14]) A language is regular iff it belongs to MSOIS].

LOGICS, MONOIDS, AND CIRCUITS 5

Proof. To show the direction from left to right, let A = (Q,A4,:,A, F) be a
finite automaton. Assume @ = {0,...k} where + = 0. We have to find a monadic
second-order sentence that expresses in any given word model w (over A) that A
accepts w. Over a word w = ay ...a,, the sentence will state the existence of a
successful run py,...,pp+1 of A. We may code such a state sequence up to p, by
a tuple (Xo,... Xy) of pairwise disjoint subsets of {1,...,n} such that X; contains
those positions of w where state ¢ is assumed. From the last state p,, the automaton
should be able to reach a final state via the word’s last letter a,,. Thus, A accepts
w iff

w IZ dX,...3X, (/\iyéj —EL’E(XiSL' A Xja:)
A Xomin
N VaVy(@Sy = Vi o jyea(Xiz A Quz A Xjy)
A Vajeri(iajea(Ximaz A Qamaz))

Let us briefly sketch also the proof from right to left. One may proceed in two steps:
First we replace first-order variables by a suitable use of second-order variables
(which simplifies the logic and hence the translation to automata), and then we
construct a finite automaton by induction over these simplified formulas. For the
first step, we introduce new types of atomic formulas involving only set variables,
namely XSY, X CY, and X C @, for a € A, with the intended interpretations “X
and Y are singletons {z} and {y} with zSy”, “X is subset of Y, “X is subset of

o, respectively. It is easy to see that this modified logic, involving only second-
order variables and the new atomic formulas, has the same expressive power as the
original one. In particular, equality between sets is definable in terms of C, and
being a singleton set can be defined by the condition that exactly one proper subset
exists. Then first-order variables (and quantifications over them) are captured by
variables restricted to singletons and second-order quantifications.

In the second step, we associate to each formula of the modified logic a finite
automaton. Since this is done by induction, the case that free set variables occur
has to be considered. A formula ¢(Xi,...,X,,) which has free variables X7,... X,
defines a set of words over the extended alphabet A x {0,1}™, where the j-th addi-
tional components of the letters determine the interpretation of X;. (More precisely,
the set of positions 7 of a word model where the j-th additional component is 1 is
the interpretation of the set variable X;.) It is easy to present finite automata that
recognize the sets defined by atomic formulas X;SX;, X; C X, and X; C @,. For
the inductive step, it suffices to consider the connectives -,V and the existential
set quantification, since the other connectives and the universal set quantifier are
definable in terms of them. This in turn amounts to the proof that the class of reg-
ular languages shares certain closure properties, namely closure under complement,
under union, and under projection. All these properties are well-known for the class
of regular languages. m|

i From the first half of the proof we obtain that regular languages are definable
by monadic second-order sentences of a special form, where a prefix of existen-
tial second-order quantifiers is followed by a first-order formula. This fragment
is called ezistential monadic second-order logic, and EMSOIS] is the associated

6 H. STRAUBING ET AL.

class of definable languages. Combining both parts of the above proof, we obtain
MSO[S] = EMSO[S].

In showing Theorem 2.1, the original motivation of Biichi [10] and Elgot [14]
was to prove that certain monadic second-order theories are decidable, for example
the “weak monadic second-order theory of successor” (which is the set of monadic
second-order sentences with S as the only predicate symbol which are true over
the domain of the natural numbers, when set variables range only over finite sets).
By the conversion of formulas into finite automata as described in the proof of the
theorem, this decision problem is reduced to the (decidable) emptiness problem for
finite automata.

In order to be able to treat more powerful theories, including quantifiers over
arbitrary sets of natural numbers, or including a second successor relation (which
leads to the infinite binary tree as underlying structure), more general models of fi-
nite automata were introduced, working over infinite words or infinite node-labelled
trees. Biichi and Rabin succeeded in proving analogues to the theorem above for
these generalized finite automata and monadic second-order logic (over the successor
structure of the natural numbers, respectively over the binary tree). The nontrivial
point here was to establish the necessary closure properties (union, complement,
projection) for the automata under consideration, which required intricate construc-
tions. By the same technique, many decidability results for modal logics, temporal
logics, and logics of programs have been obtained. For more information on this
subject see the survey [38].

If more general ways of quantification or more general underlying structures (than
words or trees) are considered, the situation changes radically. Let SO[S] be the
class of languages that are definable by general second-order sentences (allowing
also quantification over relations of higher arity), and denote by ESO[S] the class
of languages definable by existential second-order formulas (where only existential
relation quantifiers occur, preceding a first-order formula). As shown by Fagin [15],
ESO|[S] is equal to the complexity class NP (and hence much larger than the class
of regular languages), whereas SO[S] exhausts the polynomial time hierarchy. A
similar effect arises even within monadic second-order logic when the underlying
structures are no longer words or trees, but finite graphs, i.e., when the successor
relation S is replaced by an edge relation E. Already in existential monadic second-
order logic one may define graph properties that are N P-complete, for example
3-colorability.

A third way of generalizing Biichi’s and Elgot’s Theorem is to stay within re-
stricted means of quantification (namely, within first-order logic) and within the
domain of word models, but to allow more numerical predicates than S and < in
defining formulas. If P is a class of numerical predicates, then one may consider the
class FO[<,P] of languages which are definable with the numerical predicates in P
besides < and equality. In Section 5 below it will be shown that suitable choices of
‘P allow us to characterize basic circuit complexity classes.

2.2. FIRST-ORDER DEFINABILITY

In this subsection we survey (without proofs) some results on first-order definable
languages. We consider the language classes FO[S] and FO[<] and their structure

LOGICS, MONOIDS, AND CIRCUITS 7

which is derived from a complexity measure of the defining first-order formulas. The
measure is based on the prenex normal form of formulas, in which quantifiers of
the same type (existential or universal) are grouped into blocks. If there are n such
blocks starting with existential quantifiers, we speak of a ¥,,-formula. A X,,-sentence
is thus of the form

T4 VT . .. 3/ VEn@(T1, - .., Tn)

where T1,...,T, are nonempty tuples of variables, the quantifier blocks alternate
between existential and universal ones, and ¢ is quantifier-free. A TII,,-sentence has
n quantifier blocks starting with a universal one. A boolean combination of ¥,,-
formulas will be called a B(X,)-formula.

In the context of monadic second-order quantifiers and with first-order formulas
as “kernels” ¢, we know from the result MSO[S] = EMSO[S] of the previous section
that the X,-form can be reduced to X;-form. Let us consider this question for
first-order formulas with numerical predicates S and <, respectively.

The situation for first-order logic with successor S is illustrated by the following
example sentences, to be interpreted in word models over the alphabet A = {a,b}:

@11 VaVy((xSy A Qux A Qry) — 32(ySz A Qp2))

@2+ 32(Qaz AVy(zSy = F2(ySz A Quz2)))

Converted to prenex normal forms these sentences yield quantifier prefixes of type
IT, and X3, respectively. It is easy to see that a word satisfies ¢y iff it does not
end with ab and has no segment aba. Similarly, a word satisfies 2 iff it has a
segment a * a, where * indicates a or b, or (in the case that x has no successor)
the word ends with a. Such conditions on the existence of segments, suffixes, or
prefixes can be formulated directly by B(X1)-sentences when we allow the constants
min and maz. More general conditions that could be formalized by B(X1)-sentences
involve multiple occurrences of segments; for example the condition that at least two
segments ab occur is formalizable by

FzIy3x' Iy (2Sy A Qux A Qey A~z =x' Az'Sy' A Quz' A Quy')

As it turns out, all first-order sentences in the signature of the successor re-
lation S together with min and maz can be reduced to boolean combinations of
¥.1-sentences.

There is a more combinatorial formulation of this reduction result. For a word
w € A*, a segment o € AT, and a natural number ¢ let

oce) = number of occurrences of ¢ in w if this number is <t
STt otherwise

Furthermore, let pref ;(w), resp. suf (w) be the segment of the first, resp. last, d
letters of w (or w itself if its length is < d). Now define, for u,v € A* and d,t > 0,
U ~ge U

iff for all segments o of length < d we have occ, ¢ (u) = occ, ¢ (v), pref,(u) = pref,(v),
and sufg(u) = sufg(v). Then ~g; is a congruence of finite index, and we say that a

8 H. STRAUBING ET AL.

language L is locally threshold testable if L is a (finite) union of ~ 4 -classes for some
fixed d and ¢t. Thus membership of a word in a locally threshold testable language
depends only on the prefix and suffix of a given length and on the existence of
segments of a given length, counted up to a fixed threshold.

Theorem 2.2 (Thomas [35], [36]) The following are equivalent:
(a) L is in FO[S],
(b) L is definable by a B(X1)-sentence of first-order logic with numerical predi-
cate S and the constants min and max.
(¢) L is locally threshold testable.

The implications from (c) to (b) and from (b) to (a) are immediate. For the
step from (a) to (c), the “Ehrenfeucht-Fraissé technique” can be applied. For an
introduction see e.g. [39].

(From this theorem we obtain languages which belong to FO[<] but not to
FO[S]. For example the language

a*ba*ca*

is clearly first-order definable in terms of < but easily seen to be not locally threshold
testable. However, this leaves unsettled the question how to decide effectively for a
given regular language (presented say by a regular expression) whether it belongs to
FO[S] or FO[<]. In the next section effective procedures are derived from semigroup
theoretical characterizations of FO[S] and FO[<].

We now turn to the class FO[<]. As shown by McNaughton and Papert [22], it
can be characterized by a variant of the calculus of regular expressions, the “star-free
expressions” , where the Kleene star * is left out but a symbol ~ for complementation
(with respect to A* for the given alphabet A) is included. As an example over the
alphabet A = {a,b,c} consider again the language a*ba*ca*. It can be defined
without use of the star * via a represention of a* in the form

~ (A% b A* 4+ A% .- AY)

where A* stands for the star-free expression ~ (). For technical reasons we will use
the concatenation dot only via alphabet letters as in this example, i.e. we allow
the formation of an expression rg - a1 - r1 - a2 - - - ap, - r,, from expressions rg, ...,
and letters aq,...,a,. Furthermore, the atomic star-free expressions are restricted
to () alone. A star-free expression is any expression obtained from) by application
of the boolean operations ~, + and concatenation via letters. A language over a
given alphabet is called star-free if it is definable by a star-free expression. (It is not
difficult to show that our version of star-free expressions, originating in Straubing
[30] and Thérien [33], leads to the same class of languages as the classical version that
starts from the atomic expressions (, €, a € A, and includes the boolean connectives
~ and + as well as concatenation products r¢-71 - - - 7. For instance, concerning the
atomic expressions € and a, note that {e} is obtainable by subtracting all languages
A*aA* from A*, i.e., is definable by a boolean combination of expressions ~ @ and
~ {-a- ~ 0, and that a language {a} is definable via the representation {¢} - a-{€}.)

LOGICS, MONOIDS, AND CIRCUITS 9

Theorem 2.3 (McNaughton, Papert [22]) A language is star-free iff it belongs to
FO[«].

There is a tight correspondence between first-order formulas with < and star-
free expressions, based on the classification of formulas by number of quantifier
alternations and the classification of star-free expressions by their “dot-depth”.

Define the dot-depth dd(r) of star-free expressions r inductively as follows:

1. dd(@) = 0

2. dd(~r) = dd(r)

3. dd(r + s) = max{dd(r),dd(s)}

4. dd(rg a1 71 A - Ty) = max{dd(ry),...,dd(r,m)} +1
The dot-depth of a star-free language L is defined to be the smallest dot-depth of a
star-free expression defining L. The classes V,, of star-free languages of dot-depth at
most n form the dot-depth hierarchy (in the sense of Straubing and Thérien). The
example language a*ba*ca* belongs to Vs; note that the definition of a* given above
is of dot-depth 1.

Theorem 2.4 (Straubing [31], Thomas [37], Perrin, Pin [23])
1. The dot-depth hierachy is strict, i.e., for n > 0 the class V,, is properly included
m Vn+1.
2. For n > 1, a language belongs to V,, iff it is definable by a B(3,)-sentence with
< as numerical predicate.

This result shows that, in contrast to the preceding theorems, a reduction of
quantifier alternation depth to existential formulas fails for first-order logic with <.

There is a similar (and historically earlier) theorem for the version of star-free
expressions with atomic expressions including e and letters a and with concatenation
products of the form r¢ - 7y - - - r,,. The resulting hierarchy was introduced by Cohen
and Brzozowski in [11] and is often called “Brzozowski hierarchy”. The strictness of
this hierarchy was shown by Brzozowski and Knast [9], whereas the logical charac-
terization (in fact, in terms of first-order formulas including the constants min and
maz) was given by Thomas [36].

In the next section we shall consider languages which are not star-free (i.e., fall
outside FO[<]) but are still regular. Such examples can be obtained by conditions
which involve counting modulo a fixed number (modular counting for short). For
example, the set of words of even length is regular but not star-free. This motivates
the extension of first-order logic by features which allow us to express conditions on
modular counting. Two such extended logics are introduced in Examples 3 and 4
below.

3. Regular Languages and Finite Monoids

In this section we shall discuss further classes of regular languages (besides FO[S] and
FOI<]) and characterizations of language classes by properties of syntactic monoids.
The syntactic monoid of a language L C A* is the quotient monoid M (L) = A*/ ~,
where ~, is the syntactic congruence over A* defined by

w~pw iff Yu,v€e A*(uvwv € L < uw'v € L).

10 H. STRAUBING ET AL.

The syntactic morphism of L is the projection ur of A* onto M(L).
We begin with some examples.

3.1. EXAMPLES

Example 1. Let
Li=(a+b+c¢)*aala+ b+ c)*.

which is defined by the first-order sentence

Azy(2Sy A Quz A Quy).

and hence belongs to FO[S]. A simple computation shows that the syntactic monoid
of this language has six elements, consisting of the identity, a zero (which is the image
of a? under the syntactic morphism) and a four-element regular [J-class with three
idempotents (the images of b, ab and ba) and a null element (the image of a).

Example 2. Let
Ly =a*ba*ca™.
(considered already after Theorem 2.2) which is defined by the sentence
Ay (2 <y AQpz AQey) AVz((mz =z Az =y) = Qu2)).

This sentence uses order and equality as the only numerical predicates; thus Lo €
FOI<]. The syntactic monoid consists of an identity element, which is the image
of the letter a, together with a four-element nilpotent semigroup, whose nonzero
elements are the images of b, ¢ and bc.

Example 3. Let
Ly ={w € {a,b}" : |w|=0 (mod 2)}.

We can write a first-order sentence that defines L3 by introducing numerical predi-
cates
z=0 (mod k),

for £ > 1. This predicate is interpreted to mean, ‘x is a position divisible by &’,
where the positions are numbered from left to right, beginning with 1. L3 is then
defined by the sentence

Ve(-Jy(z <y) = (z=0 (mod 2))),

which says, in effect, that if there is a final position in the string, then that position
has an even number. We denote by FO[<,{z = 0 (mod k)}] the family of lan-
guages defined by first-order sentences in which we admit both the ordering and these
new predicates as numerical predicates. Hence Lz € FO[<,{x =0 (mod k)}]. The
syntactic monoid of L3 is the cyclic group of order 2; all words of even length are
mapped by the syntactic morphism to the identity of the group, and all words of
odd length are mapped to the generator.

Example 4. Let L, be the set of words over the alphabet {a,b} in which there
are an even number of occurrences of the letter a. As in the preceding example,

LOGICS, MONOIDS, AND CIRCUITS 11

the syntactic monoid is the group of order 2, however the syntactic morphism is
different. In the present example the letter a is mapped to the generator of the
group and the letter b to the identity. We define L4 by the sentence

320 2Q .

The symbol 329 is a modular quantifier. It is interpreted to mean ‘there are
exactly 0 mod 2 positions such that...” Thus the sentence says precisely that the
number of positions with the letter a is even. We will use the notation MODy]...]
analogously to FO...] to denote the classes of languages defined by sentences with
modular quantifiers of modulus k& with specified numerical predicates. We also use
(FO + MODy)[..] to denote the classes defined when both the ordinary quantifiers
and modular quantifiers are available. Thus Ly € MOD5[0], since we did not use
any numerical predicates in the defining sentence.

What are the inclusion relations among these language classes, and how can we
effectively decide to which classes a given regular language belongs? First, it is
straightforward to verify that we have the inclusion chain

FO[S] C FO[<] C FO[<,{z =0 (mod k)}] C (FO + MOD})[<] C MSO[S].

To answer the question on the strictness of these inclusions and to obtain effective
tests for determining if a given regular language belongs to any of these classes, we
shall present semigroup theoretic characterizations of all these classes.

3.2. THE KEY THEOREM

In the next two sections we will outline a proof of the following theorem.

Theorem 3.1 Let L C A*. L € FO[<] if and only if L is reqular and M (L) is
aperiodic.

In particular, this theorem implies that the languages L3 and L4 of the examples
in the preceding section are not in FO[<], since their syntactic monoids are groups.

This theorem is actually a consequence of two different results: One, due to
McNaughton and Papert [22] and mentioned above (Theorem 2.3), characterizes
FOI<] as the family of star-free regular languages—those that can be expressed using
only boolean operations and concatenation— and the other, due to Schiitzenberger
[26], characterizes the star-free regular languages as those with aperiodic syntactic
monoids.

We will use some heavy algebraic machinery to prove this theorem. There are, to
be sure, simpler proofs than the one we outline here, but the argument we give has
the advantage of generalizing to treat different classes of quantifiers and numerical
predicates.

3.3. THE BLoCK PRODUCT

Let M and N be monoids. The block product of N and M, denoted N o M, is the
set NMXM » M. together with a multiplication given by

(F1,m1)(Fa,ma) = (F,mima),

12 H. STRAUBING ET AL.
where for all m,m' € M,
F(m,m') = Fy(m,mam')Fy(mmy,m’').

It is straightforward to verify that this multiplication is associative, and that (I,1),
where I(m,m') = 1 for all m,m' € M, is the identity element. Thus N o M is
itself a monoid. The map

(F,m) —» m,

is a homomorphism from the block product onto M. It is not hard to show that
if G is a group contained in N o M, then the kernel of the restriction of this
homomorphism to G is isomorphic to a group in the direct product of |[M|? copies
of N. In particular, the block product of two aperiodic monoids is aperiodic. By the
way, the block product is not an associative operation, and it most certainly is not
a commutative operation.

The definition of the block product is a bit obscure, so let us try to provide
a way to understand what it’s all about. Let us say that a homomorphism ¢ :
A* — K, where K is a monoid, decomposes with respect to M and N if there exist
homomorphisms

a:A* = M,

and
B(M x Ax M)* > N

such that the value of ¢ at a word a; - - - a, is determined by
afar -+ ay)

and

B(1,a1,a(as ---a.))B(alar), az,a(az - - - a;)) - -- Bla(ar - - . ar1),a.,1).

One can then show that if ¢ decomposes with respect to M and N, then ¢
factors through a homomorphism ¢ : A* - N o M, and that if ¢ factors through
a homomorphism into the block product, then ¢ decomposes with respect to M and
NMxM 1t is this property of the block product that we will use in the analysis of
logical formulas.

The Krohn-Rhodes Theorem is a general decomposition theorem for finite monoids.
Although it is usually stated in terms of the wreath product, there is a version for
block products that we will use in the next subsection:

Theorem 3.2 Every homomorphism ¢ from A* into a finite monoid K factors
through an iterated block product

MT a (MT,]_ o --- 0O (M2 a M]_)),
where each M; is either a simple group that divides K or the monoid Uy = {0,1}.

The block product, along with this version of the Krohn-Rhodes theorem, is
described in Rhodes and Tilson [25].

LOGICS, MONOIDS, AND CIRCUITS 13

3.4. How THE KEY THEOREM IS PROVED

We will merely sketch the main points of the argument. If M (L) is aperiodic, then
by the Krohn-Rhodes Theorem, the syntactic morphism uy, factors through a block
product

U o (Ul o --- 0 (Ul u) Ul))

Let us denote this iterated block product by Ul[r]. It follows from our remarks con-
cerning decomposition, and the fact that U; is idempotent and commutative, that
there is a homomorphism

a:A* 5yl
such that the image of uy, at w € A* is determined by a(w) and by the set of triples
{(a(w"),a,a(w")) : w = w'aw"}.

This is used to prove by induction on r that for all homomorphisms 6 : A* — Ul[r],

the sets 6= (k), k € Ul"! are in FO[<], and thus L, which is a finite union of such
sets, is in FO[<].

For the converse, we must show that if L € FO[<], then M (L) is aperiodic. We
will interpret formulas with free variables in {z1,...,z;} in word structures, which
we view as words over the extended alphabet A x 2{#1:--%x} A formula 6 with free
variables thus defines a language over this extended alphabet. For example, if 8 is
Qqx1, then Ly is the language

A*(a, {z1 D) A",
If 0 is 1 < x9, then Ly is
A*(A x {{z1}})A™(A x {{z2}})A"

We show by induction on the construction of a formula 6 of FO[<] that M (Lyg)
is aperiodic. This is easy to show for the atomic formulas, and it is also easy to show
that aperiodicity is preserved under boolean operations. The heart of the argument
is the proof that aperiodicity is preserved under quantification: Let 6 be a formula
with free variables in {z,21,...,2}, and suppose that M (Ly) is aperiodic. Let ¢
be the formula 326. We denote by 14 and p¢ the syntactic morphisms of Lg and L,
respectively. Now p. decomposes with respect to M (Lg) and Ui, since we can take
a = g, and set

B(m, (a,X),m') =0
if and only if
m-a(a, X U{z}) -m' € pg(Lo).

Thus p¢ factors through N o M(Lg), where N is a direct product of copies of Uy.
It follows from the inductive hypothesis and our remarks concerning groups in block
products that M (L) is aperiodic.

14 H. STRAUBING ET AL.

3.5. CHARACTERIZATIONS OF OTHER LANGUAGE CLASSES

The preceding result can be extended in a number of different ways. The first
extension characterizes the language classes defined with modular quantifiers and
ordering:

Theorem 3.3 Let L C A* be a regular language. Then L € MODI[<] if and only if
M(L) is a solvable group, and L € (FO + MOD)[<] if and only if every group in
M (L) is solvable.

This result is due to the authors [32]. The argument used to prove this is virtually
identical to the one used to prove the characterization of FO[<]. The crucial point
is that modular quantification with modulus ¢ is equivalent to formation of the
block product with Z, on the left, in the same sense that existential quantification
is equivalent to forming the block product with U; on the left. The Krohn-Rhodes
Theorem implies that every homomorphism into a monoid containing only solvable
groups factors through a block product whose factors are copies of U; and cyclic
groups, and this is used to show that if M (L) contains only solvable groups then
L € (FO+MOD)[<]. Conversely, if L € (FO+MOD)[<], then we use the properties
of groups contained in block products to conclude that every group in M(L) is
solvable. For the characterization of M OD[<] we need the additional facts that the
block product of two groups is a group, and that a homomorphism into a group
G factors through an iterated block product all of whose factors are the simple
composition factors of G.

Quite similar techniques are used to show the following two theorems, due to
Barrington, Compton, Straubing and Thérien [3]:

Theorem 3.4 Let L C A* be a regular language. Then
Le FO[<,{z=0 (modk):k>1}]

if and only if for all t > 0, py,(AY) (the image of A by syntactic morphism py, of L)
contains no nontrivial group.

This shows that the language L, of the examples in 1.1 is not in
FO[<,{x =0 (mod k) :k > 1}].
There is also a modular version of this theorem:
Theorem 3.5 Let L C A* be a regular language. Then
Le(FO+MOD,))[<,{x=0 (modk):k>1}]

if and only if for all t > 0, every group in pr(A) is solvable, and has cardinality
that divides a power of q.

Somewhat different arguments are used to characterize the classes in which suc-
cessor and equality are the only numerical predicates:

LOGICS, MONOIDS, AND CIRCUITS 15

Theorem 3.6 Let L C A* be regular. Then L € FOIS] if and only if M(L) is
aperiodic, and for all e, s, f,t,u € pur(AT), with e, f idempotent, esfteuf = euftesf.

This result was first observed by Beauquier and Pin [7] in the context of infinite
words. It follows from a Theorem 2.2, which characterizes FO[S] as the class of
‘locally threshold testable’ languages, and the algebraic characterization of this class,
which is a result of Thérien and Weiss [34]. A corollary is that the language Lo (from
Example 2 of Section 3.1) is not in FO[S], because the identity element of M (L2)
is an idempotent of ur,(A"), and we get a contradiction to the condition in the
theorem by taking e = f =t =1, s = pr,(b) and u = pr,(c). In particular, the
order relation cannot be defined by a first-order formula using only successor and
equality.

In fact, there are effective algebraic characterizations for all the classes formed
by various combinations of first-order and modular quantifiers and the numerical
predicates discussed here. For details, see the forthcoming book by Straubing [29].

3.6. A QUESTION

Up until now the numerical predicates we have considered give rise only to regular
languages when used in defining sentences. Of course one can consider sentences
with such numerical relations as ‘y = 2z’, or ‘y is the Godel number of a Turing
machine that halts when started on the binary representation of z’. These will give
rise to nonregular languages (in the first instance) and nonrecursive languages (in
the second). So let us ask the question posed at the end of 1.1 in this wider setting:
Are there any numerical predicates we can introduce so that Ly, the set of strings
with an even number of occurrences of the letter a, is first-order definable? We
shall see in Section 5 that the answer to this very difficult question is ‘No’, and that
this reveals interesting connections between logic, the theory of finite automata, and
circuit complexity.

4. Circuit Complexity and Finite Monoids

Boolean circuits are now extensively studied as a model for parallel computations.
In recent years, deep connections have been found between certain classes of circuits
and computations taking place in finite monoids. In this section, we will present
some results in this area: we assume that the reader has more knowledge of algebra
than of computational complexity.

4.1. COMPUTATIONAL COMPLEXITY

For both practical and theoretical reasons, computer scientists are interested in
classifying problems according to the amount of computing resources required to get
their solution. The classical model for sequential computations is the Turing machine
and the usual complexity measures are time and space. A language L is recognizable
in time t(n) if there exists a Turing machine that determines membership in L using
at most t(n) steps on any input of length m; L is recognizable in space s(n) if
there exists a Turing machine that determines membership in L while visiting at
most s(n) memory cells on any input of length n. Two typical complexity classes

16 H. STRAUBING ET AL.

definable in this framework are LOGSPACE, the family of languages recognizable in
deterministic logarithmic space, and PTIM E, the family of languages recognizable
in deterministic polynomial time: an important open question is to determine if
the easily shown inclusion LOGSPACE C PTIME is strict or not. A standard
reference for this material is [18].

The development of parallel technology has led to the introduction of new com-
puting models. A formalism commonly considered for parallel computations is that
of boolean circuit. An m-input boolean circuit C), is given by a vertex-labeled di-
rected acyclic graph where
— vertices have fan-in 0 or 2
— vertices of fan-in 0 (the input gates) have their labels in {1,0, X1,...,Xp,

Xi,.., Xn}
— vertices of fan-in 2 (the internal gates) have their labels in {AND, OR}
— there is a unique vertex of fan-out 0 (the output gate)

Such an object computes a function C, : {0,1}" — {0,1} in a natural way.
Given z € {0,1}", an input gate labeled X;(X;, 1,0) returns the value of the it" bit
of z (the complemented value of the i*" bit of x, 1, 0); an AND gate returns 1 iff
both edges entering it carry the value 1; an OR gate returns 1 iff at least one edge
entering it carries the value 1; finally the value of C,,(z) is the bit returned by the
output gate.

To recognize subsets of {0, 1}*, we consider families of circuits, C' = (Cy)n>0, and
the words of length n accepted by C are precisely those satisfying C,(z) = 1. We
say that L is recognized in depth s(n) iff there exists a circuit family C' = (Cy)n>0
accepting L such that the number of vertices in C,, is s(n); we say that L is recognized
in size d(n) iff there exists a circuit family C = (Cp)n>0 accepting L such that the
length of the longest path in C,, is d(n).

Circuits are meant to simulate parallel computations since all gates at a given
level operate simultaneously. Thus circuit depth measures parallel time. Also we
identify parallel space with circuit size. It is interesting to note that, with the above
definitions, sequential space is polynomially related to parallel time and sequential
time is polynomially related to parallel space. For a discussion of this fact and of
circuits in general, the reader may consult [12].

We end this introduction with some remarks.

1. What we have defined here is non-uniform families of circuits, that is no condi-
tion on the algorithmic definability of C' = (C)n>0 is imposed. In particular the
model allows non recursively enumerable languages to be recognized. The rem-
edy is to require some condition on how to construct the graph C,,; for example,
it may be asked that, given 1™, some log-space bounded Turing machine is able
to produce a description of C,. Barrington, Immerman and Straubing [4] offer
a detailed study of various uniformity criteria; our presentation will concentrate
exclusively on the non-uniform model.

2. One can consider circuits over an arbitrary input alphabet A by allowing input
gates to be labeled by “X; = a” for any a € A.

3. We do not distinguish between a class C of circuits and the class of languages
recognizable by circuits in C. The context makes clear which is intended.

4. By allowing circuits to have several output gates, we can investigate computation

LOGICS, MONOIDS, AND CIRCUITS 17
of functions instead of simply recognition of languages.

4.2. NC' AND ITS SUBCLASSES

The circuit class NC' that we will be interested in consists, by definition, of those
circuit families C' = (Cp,)n>0 of O(logn) depth (we have d(n) = O(logn) iff there is
some constant ¢ such that for all n d(n) < clogn); note that such circuits necessarily
have polynomial size since only binary gates are used. It is an easy exercise to show
that, with the proper uniformity condition, NC' C LOGSPACE; it is an open
question to determine if the inclusion is proper or not.

An example of a non-trivial function computable in NC? is iterated addition,
which is defined as follows:

input: n n-bit integers
output: the n + logn-bit sum of the inputs

The trick is to repeatedly replace each group of three integers of length m (say
X=z1...2p,Y =y1...ym and Z = z;1 ... 2,,) by two integers of length m +1 (say
C=0c...coyand D =dy...dp—10) such that X + Y + Z = C + D. This can be
done by letting

cg=1iff z; +y; +2z;isodd (fori=1,...,m)
di=1iﬁ..’ﬂz’+1 + Yiy1 + 2ip1 > 2 (fori:l,...,m)

In O(log n) stages, each of constant depth, we thus produce two integers, whose sum
is equal to that of the original n input numbers. We leave as an exercise to show
how these two remaining integers can be added up with O(logn) levels of binary
gates. This example implies that the language

MAJORITY (21,...,2,) = { 0 otherwise

and the language

1if > z; =0modq
MOD, (1, .- an) = { 0 otlr%e:rwise
arein NC'. (Here we identify a language L C {0, 1}* with its characteristic function,
mapping (z1,...,%,) to L iff 21 ...2, € L.)

We next define certain subclasses of NC! by restricting the depth of our circuit
families C' = (Cy,)n>0 to be constant while allowing more powerful gates than simply
binary AND and OR. The class of constant-depth circuit families constructed with
binary gates (usually denoted NC?) is not very interesting: if C' = (C},),>0 is such
a circuit family, there is a fixed bound ¢ on the number of bits that can influence
the value of Cy,(z), and thus C' cannot compute the AN D function since it depends
on all bits.

A more interesting case is obtained by considering circuit families of constant-
depth, polynomial size using AND gates and OR gates of arbitrary fan-in. This
class of languages is denoted by AC°. The bound on the size implies that all gates

18 H. STRAUBING ET AL.

have polynomial fan-in and thus each one can be replaced by an O(logn)-depth tree
of binary gates. Hence AC® C NC'. A deep result, independently proved by Furst,
Saxe and Sipser [16] and Ajtai [1], says that the inclusion is proper; any M OD,
language belongs to NC* but not to AC°.

In a similar vein, we define, for any ¢ > 2, CC°(q) as the class of circuit families
C = (Cn)n>0 having constant depth, polynomial size, constructed with binary AN D
and OR gates, and MOD, gates of arbitrary fan-in. Since MOD, is computable
in NC*, it follows that CC°(q) C NC'. We will write CC° for U, CC°(q). Finally

ACC®(q) is similarly obtained by allowing AND, OR and MOD, gates of arbitrary
fan-in: ACC® will stand for UqACCO(q) and we have ACC® C NC'. It can be

shown that if p and ¢ have the same prime divisors then CC°(p) = CC°(¢) and
ACC®(p) = ACC(q). Tf p and ¢ are distinct primes, Smolensky has shown in [27]
that MOD, ¢ ACC(g), hence that ACC®(g) € NC" in that case. The status of
the inclusion when ¢ is composite remains an open question.

4.3. PROGRAMS OVER FINITE MONOIDS

The connection between circuits and monoids is based on the following definition.
Let M be a finite monoid; an n-input M-program ¢,, (over input alphabet A) is a
sequence ¢, = vy ...y of instructions, where v; has the form (i, f;) for some 1 <
ij<n,fj:A—> M. Oninput = 1 ...z, € A", ¢, () returns the monoid element
which is the product of fi(x;,) ... fi(z;,). As in the circuit case, functions from A*
into M are obtained by considering families of M-programs ¢ = (¢n)n>0. Fixing an
accepting subset F' C M, ¢ then recognizes the language L, where L[| A" = {z €
A™ : ¢, (x) € F}. We will denote by B(M) the class of languages that can be thus
recognized by families of M-programs ¢ = (¢,)n>0, with the added constraint that
¢n has polynomial length, i.e. ¢, contains at most n° instructions for some constant
¢. We will consider only the non-uniform version of this definition, but as in the
circuit case, uniformity criteria on the algorithmic definability of our programs can
be imposed.

Such computing devices were originally introduced, in a different but equivalent
form, under the name bounded-width branching program (Borodin et al. [8]). They
observed the following

Lemma 4.1 For any M, B(M) C NC*.

Proof. Suppose we have a family ¢ = (¢n)n>0 of M-programs, where ¢, has
length I =n¢ and LA™ = {z : ¢ (z) € F}. We define an n-input circuit C,, that
recognizes the same set in depth O(logn) by the following process.

Givenxz =z...2, € A™:

— in constant-depth (in fact using wires only) produce for each instruction v; =
(i, f;) the binary encoding of f;(x;;);

— in parallel multiply the ! monoid elements two by two, i.e. produce [/2 binary
encodings corresponding to the products of pairs of elements; this can be done
in constant depth;

— repeat the previous step until the product of the [elements, i.e. the value of
¢n(x), is obtained; this will require logl = O(logn) stages, each of constant
depth;

LOGICS, MONOIDS, AND CIRCUITS 19

— test, in constant depth, if ¢, (z) belongs to F or not.
O

Borodin et al. [8] conjectured that NC' C |J,, B(M) was false. Indeed, it seems
that the fixed-size memory of the program should not allow computing M AJORITY
i.e. counting if the number of bits that are on is at least n/2. It came as quite a
surprise when Barrington disproved the conjecture in [2], using a clever but simple
trick available in simple non-abelian groups. The deep relationship between small-
depth circuits and computations realized by M-programs was further strengthened
by Barrington and Thérien [6] and Barrington, Straubing and Thérien [5] where it
was shown that natural subclasses of NC! correspond exactly to natural algebraic
restrictions on the monoids that can be used.

Before presenting some of these results, we introduce a notion of reducibility
between languages which arises naturally in this context and which will make some
of the arguments to come easier to describe. Let A, B be finite alphabets and
consider n-input programs for which the instructions have the form (i, f) for some
1<i<mn,f:A— B. The program thus induces a map ¢, : A — B*. Let
L C A*, K C B*; we say that L is reducible to K, denoted L < K, iff there is a
family ¢ = (¢n)n>0 of programs as above such that the length of ¢, is at most n° for
some constant ¢ and z € L A™ iff ¢,,(z) € K. It is easily seen that < is transitive
and that any class B(M) is closed under this reducibility.

Recall that a language K C B* is regular iff there exists a morphism ¢ : B* — M,
where M is some finite monoid, such that K = ¢ 1¢(K). The interest of our
reducibility notion is that the classes B(M) are exactly the closure under < of the
regular languages recognized by M via morphisms.

Lemma 4.2 L € B(M) iff L < K for some regular language K recognized by M via
a morphism.

Proof. If L € B(M) we can view the family of M-programs ¢ = (¢n)n>0 as
producing a string in M* instead of an element of M. Letting nar : M* — M be
the canonical morphism and K = n;,' (F), we have that L < K. For the converse,
suppose ¢ is the reduction from L to K and ¢ : B* — M is the morphism recognizing
K. Composing ¢ and ¢ gives us a family of M-programs that recognizes L, using
Y(K) as accepting set. O

4.4. BARRINGTON’S THEOREM

We now prove the theorem of Barrington ([2]). Consider Sj, the group of permuta-
tions on five points: let e be the identity and o be any 5-cycle. We define B, (S5)
to be the class of languages L for which there is a polynomial length family of

Ss-programs ¢ such that
ocifx el
o(x) = { e otherwise
Lemma 4.3 For any two 5-cycles o and 7 B,(S5) = B, (Ss).

Proof. We have that ¢ and 7 are conjugates in Ss, say 7 = 0 10f. Suppose
¢n = V1 ...y is such that ¢, (z) = o if z € L, e otherwise. We modify ¢,, as follows:

20 H. STRAUBING ET AL.

the first instruction is changed to produce 81 f;(z;,) instead of f(z;,) and the last
one is changed to produce f(z;,)0 instead of f(x;). Then the new program produces
0~ 1¢, ()0 instead of ¢, (z), i.e. it produces 7 iff the original one was yielding o and
e otherwise. Note that the modification preserves the length of the program. O

Lemma 4.4 B,(S5) is closed under complement

Proof. As in the previous proof, we modify each program by changing the last in-
struction so that it produces fi(x;,)o ! instead of f(z;,). The new program produces
én(z)o~! instead of ¢, (z), i.e. it produces c~! when the original one was yielding
e and e when the original one was yielding 0. Hence L is in B,-1(S5) = B,(Ss).
Once again, the modification preserves the length. O

Lemma 4.5 Let 0 = (12345),7 = (13542). Then 6 = oro~ 771 is a 5-cycle.
Proof. (12345)(13542)(54321)(24531) = (13254). O
Theorem 4.6 NC' = |J,, B(M).

Proof. The theorem is proved by showing that an n-input circuit, which we
can assume to be a tree, of depth d can be simulated by an n-input Sz-program of
length 4? which will yield some 5-cycle if the input is accepted by the circuit and
the identity otherwise. By induction on d;

d = 0 The circuit has the form X;, X;,1 or 0. In each case, a single instruction can
appropriately simulate the circuit.

d > 0 By Lemma 5.2, we can assume that the output gate is an AND, i.e. that
C = AND(C4,Cs) where each of Cy,C> have depth d — 1. By the induction
hypothesis, there exist ¢, via which the language accepted by C1 is in B, (S5), @2
via which the language accepted by Cs is in B, (Ss5), ¢35 via which the language
accepted by C is in B,-1(S5), ¢4 via which the language accepted by Cj is
in B,-1(Ss), each of which has length 4¢~!. Let ¢ = ¢1¢op3h4; then for any
z € {0,1}",

oro tr =0 if C(z) =1

e otherwise

o) = {

0O
We add the following remarks.

— The theorem in effect proves that NC' = B,(Ss). In fact it is true that NC* =
B(M) for any monoid M containing a simple non-abelian group.

— In terms of the reducibility notion introduced in the last section, the theorem
says that for any language L in NC", we have that L < K where K is the word
problem of Ss.

— An identical trick was used in a different context by Maurer and Rhodes in [20].
Indeed, the theorem of this section follows directly from their result.

LOGICS, MONOIDS, AND CIRCUITS 21

4.5. ALGEBRAIC DESCRIPTIONS OF SOME SUBCLASSES OF N(C!

In the last section, it was shown that B(M) = NC' for any monoid containing
a simple non-abelian group. A natural question is to investigate the computing
power of monoids that do not have this property (they are called solvable monoids).
One nice feature of the relationship via programs between circuits and monoids
is the fact that natural subclasses of NC' (such as AC?, CC°, ACC®) can be put
in correspondence with natural restrictions on the monoids (respectively aperiodic
monoids, solvable groups, solvable monoids).

These results are easier to prove using reductions to regular languages: we
then use the nice combinatorial descriptions of the languages recognized via mor-
phisms into aperiodic monoids (Schiitzenberger [26]), solvable groups (Straubing
[30], Thérien [33]) and solvable monoids ([33]).

We will now give in details the proof for aperiodic monoids. Consider the follow-
ing hierarchy of languages over some alphabet A:

— Hi = boolean closure of languages of the form A*aA* with a € A
— Hpg = boolean closure of Hy_; and languages of the form Lga; L ... a,L, with
L; € Hip—1,0a; € A.

This is the dot-depth hierarchy as introduced in Section 2.2, modified slightly at
the first level ;. A language L is star-free, that is can be described by a regular
expression not using the * operator (but allowing complement) iff it belongs to some
Hpy. ;From Sections 2 and 3 we know that L is star-free iff it can be recognized
via a morphism into an aperiodic monoid. Note as a consequence of this result that
the language M OD, cannot be described by a star-free expression since any monoid
recognizing M OD, via a morphism must contain the cyclic group of order q.

We are now ready to prove our algebraic characterization of the circuit class AC?.

Theorem 4.7 (Barrington, Thérien [6]) AC® = |J,, B(M), where the union ranges
over all aperiodic monoids.

Proof. To show the inclusion from right to left we use the fact that L € B(M)
for some M aperiodic iff L < K for some star-free K. Let ¢ = (¢n)n>0 be the
reduction from L to K. We construct an appropriate circuit as follows. Given
T=21...2, €A™
— in constant depth, in fact using wires only, produce the binary encoding of

w = ¢n(z);

— determine if w € K; a union operation translates into a binary OR, a comple-
ment translates into a negation (which can be pushed to the input level using
de Morgan’s laws); a concatenation Koby K ...b.K, translates into an OR of
fan-in (") of ANDs of fan-in 2r + 1 (the subcircuit has to check every set of
r positions of the input to verify if these positions contain by, ..., b, and if the
intermediate segments belong to Ky, ..., K,).

Note that when K belongs to Hy, the circuit will have & levels of unbounded gates.

For the converse, we assume that our constant depth circuit C' = (C,)n>0 is over
the binary alphabet and that it has k alternating levels of OR gates and AND
gates. We say that a circuit is an OR-circuit (AN D-circuit) if the output gate
is an OR (AND). We show by induction on k that L < K} for some star-free
K, C By ={a,b,c1,...,cp—1}".

22 H. STRAUBING ET AL.

k=1: Suppose C, = OR(X;,,..., X;,, Xj,,..., X},). Welet ¢, = (i, f) ... (is,),
(1 D) s (s)y where £(0) = F(1) = a, £(1) = F(0) = b. Clearly gu(z) €
B;bB; iff Cp(x) = 1. If C), is an AN D gate instead, we have ¢, (z) € BfaBj iff
Cyn(z) = 1. Letting S1 = BfbBf and P = BjaBj, we notice that both S, P

are recognized via a morphism into Uj, the 2-element semilattice.

k > 1: We suppose inductively that there exist S;_1, Py_1, each recognized via a
morphism into an aperiodic monoid Uy_1, such that for any n-input O R-circuit
C (AN D-circuit D) of depth k — 1 and size n, there exists an n-input pro-
gram ¢ having the property that ¢(z) € Sp_1(Px—1) iff C(z) = 1(D(z) = 1)
and whose length is a polynomial with the degree depending only on k and c.
Let now C = OR(D1,...,D;) be an OR-circuit of depth k and size n®. We
let ¢ = (1,)d1(1, f)...¢s(1, f), where f(0) = f(1) = cx—1, and ¢1,...,¢s
are the programs recognizing the languages of the AN D-circuits Dy, ..., Dy
respectively. It is easily seen that ¢(z) € Bjck—1Pr_1cx—1Bj iff C(z) =1
since the only way the program can produce a segment in Pj_; between two
markers cg—1 is to have some D; being 1. Moreover the condition on the
length of ¢ is obviously satisfied. If C' is an AN D-circuit instead, we see that
d(x) € (cg—1Sk—1)*ck—1 iff C(z) = 1. Let Si, Py be the two languages just
introduced. Consider U,_; as a transformation monoid and let U,_; be ob-
tained from Uj_; by adding the constant transformations. Then one can show
that Sg, Py are both recognized by the wreath product Uy = U; o Ug_1; the
idea is that the markers ¢;_; act as resets to the identity of Ug_; in the front
monoid and the end copy of U; is used to detect if what happens between two
consecutive markers belongs to the appropriate set. Note that Uy is aperiodic,
hence Sy, Py, are star-free.

O

We have used a different alphabet By for circuits of depth k to simplify the
proof. A more careful argument can be given that works with only one marker
for arbitrary depth. Finally, define AC% as those constant depth polynomial size
families of circuits C' = (Cp)n>0 satisfying the condition that, for any n, any path in
C), contains at most k gates of fan-in greater than 2 (for an unimportant technical
reason, we will suppose that all gates on the first level have fan-in greater than 2;
this can always be achieved by duplicating inputs); it is possible to specialize the
above theorem to each individual class ACY. This will be stated in full in the next
subsection.

Similar characterizations exist for the classes CC° and ACC? in terms of solvable
groups and solvable monoids respectively. One way to prove these is to use the
combinatorial descriptions of languages recognize via morphisms into such monoids
([30], [33]), descriptions which are based in part on a modular counting version of
concatenation.

Theorem 4.8 [5] CC° = |J,, B(M), where the union ranges over all solvable groups;
[6] ACC® = U, B(M), where the union ranges over all solvable monoids.

Once again this general theorem specializes to take into consideration the exact
depth of the circuits.

LOGICS, MONOIDS, AND CIRCUITS 23

4.6. CONCLUSION

We call variety a class V of finite monoids closed under division (i.e. morphic image
of submonoid) and finite direct product. It has clearly emerged over the years that
varieties are the proper level at which to classify languages recognized via morphisms
into finite monoids (see [13], [24]).

The results of the last subsection show that many interesting subclasses of NC*
can be algebraically characterized using polynomial length programs. It turns out
that varieties seem to play a key role in this setting as well and McKenzie, Péladeau
and Thérien [21] explore this point of view in details. Define B(V) = U,y B(M);
let M stand for the variety of all monoids, A for the variety of aperiodic monoids,
Gsol for the variety of solvable groups and Msol for the variety of solvable monoids.
We thus have NC' = B(M), AC° = B(A), CC° = B(Gsol) and ACC° = B(Msol).
The separation of circuit classes is thus, in all those cases, equivalent to separating
the computing power of the corresponding varieties. The problem is that contrary
to what happens for morphisms, distinct varieties V. and W can give rise to the
same class B(V) = B(W). We give two examples:

Example 1 It follows from Barrington’s theorem that for any variety V containing
a simple non-abelian group we have B(V) = B(M).

Example 2 Let J; be the variety of idempotent and commutative monoids, and
for k > 2, let Jy be the variety generated by monoids of the form U; o Mj,_; where
M1 € Jx_1. For k > 1, let H, be the smallest variety containing enough monoids
to recognize all languages in Hy; we have Hy = J; but Jx € Hy for all & > 1.
On the other hand a careful inspection of the proof of Theorem 4.7 shows that
ACY = B(Jy) = B(Hy).

In [21], it is shown that B(V) = B(W) iff the two classes contain the same regular
languages: more precisely B(V) C B(W) iff any word problem of any monoid in V
can be computed by a polynomial length family of programs over some monoid in
W. Thus the same claim applies to corresponding circuit classes. This paper also
offers a general conjecture about the computing power of various varieties contained
in Msol which, if proved, would give as corollaries virtually all the known results
and conjectures believed to be true about the internal structure of NC1.

5. Tying in Logic Again

5.1. CirculT COMPLEXITY AND LOGIC

Let us return to the question asked at the end of Section 3: Is there any numerical
predicate we can introduce so that the set of strings over {a, b} with an even number
of occurrences of a is first-order definable?

The answer is ‘No’. This follows from the circuit lower bounds of the last lecture,
and the next theorem. Let us denote by N the class of all numerical predicates,
so that FO[N] denotes the family of languages definable by first-order sentences in
which arbitrary numerical predicates are admitted.

Theorem 5.1 FO[N] = AC°.

24 H. STRAUBING ET AL.

This theorem appears in Immerman [19] and Gurevich and Lewis [17]. By the
results of [1] and [16], cited in Section 4, the language MOD. is not in AC?, so the
theorem immediately gives the answer to our question.

Theorem 5.1 is one of a collection of results that characterize computational com-
plexity classes in terms of formal logic. The first of these is a theorem of Fagin [15]
that the class NP of languages recognizable in nondeterministic polynomial time
are precisely those definable by existential second-order sentences with successor.
Immerman [19] gives a large number of such results for various complexity classes,
including Theorem 5.1.

The theorem is quite surprising at first glance, because the polynomial size bound
in the definition of AC? appears nowhere in the definition of FO[N]. In fact, the
theorem is not all that difficult to prove. We will sketch here a quick proof of
the theorem that uses the characterization of AC? in terms of programs over finite
monoids (see Theorem 4.6). First, suppose L is defined by a first-order sentence ¢.
Beginning with the outermost quantifier, we replace

Az6(x)

by

and similarly replace universal quantifiers by AN D-gates. When we reach the atomic
formulas we replace sentences of the form

p(ila"'aim)a

where p is a numerical predicate by a constant 1 or 0, depending on whether the
sentence is true or false, and Q1i,Qoé by X; and X;, respectively. The resulting
expression is a circuit that recognizes the set of strings of length n in L. The depth
of this circuit is equal to the depth k of nesting of the quantifiers in ¢, and the size
is bounded by a polynomial in n of degree k. Thus L € AC°.

Conversely, if L € AC?, then L is recognized by a family of programs of length
n”® over a finite aperiodic monoid M. That is, an input string w = ay - --a, over
{0,1} is translated to a string

k

m(w) =by---br € M*.

Since M is aperiodic, it follows from the results cited in Section 3 that w is accepted
if and only if 7(w) satisfies a sentence § of FO[<]. We will use € to construct a
sentence of FO[N] that defines L. We can encode each position in w(w) by a k-tuple
of positions in w. We then replace each quantifier

Azp(z), Vay(z),

in 6 by
Az -z (21, - - -, 2k), Vo1 - - - Vo (x, - .., Tk)-

LOGICS, MONOIDS, AND CIRCUITS 25

The numerical relation < on positions in 7(w) is replaced by a 2k-ary numerical
predicate expressing the corresponding relation on positions of w (this will depend
on the encoding). The atomic formula Q,,z, where m € M is replaced by

(R(T)n,(xla .. '7$kay)z) A Qoy) \ (Rin(xla .. '5$kay7z) A Qly)a

where R (z1,...,Zk,y,2) is interpreted to mean: ‘in the program for inputs of
length 2, the " instruction, where z is encoded by (1, ...,z), reads input bit y
and emits m if this bit is equal to j°. This is a numerical predicate that depends
on the choice of encoding. When this translation is complete we have the promised
sentence of F'O[N] that defines L.

The same techniques can be used to give characterizations of other circuit com-
plexity classes in terms of modular quantifiers:

Theorem 5.2 Let ¢ > 0. Then

ACC®(q) = (FO + MOD[N]),

and
CC°(q) = MOD[N].

5.2. REGULAR LANGUAGES IN CIRCUIT COMPLEXITY CLASSES

The following theorem, due to Barrington, Compton, Straubing and Thérien [3],
characterizes the regular languages in AC°.

Theorem 5.3 Let L C {0,1}* be a regular language. L € AC° if and only if
Le FO[<,{z=0 (modk):k>1}].

The ‘if’ direction of this theorem follows immediately from Theorem 5.1. For the
only if direction, we use the algebraic characterization of the class FO[<,{z = 0
(mod k) : k > 1}] from Section 3: If L € AC? is regular and L ¢ FO[<,{z =0
(mod k) : k > 1}], then there exist ¢ > 0, ¢ > 1 such that ur,(A?) contains a cyclic
group of order q. We use this together with the circuits for L to construct an AC°
family of circuits that counts the number of occurrences of 1 in the input modulo gq.
This contradicts the results of [1] and [16] cited in Section 4.

5.3. A GENERAL PRINCIPLE?

We will say that a numerial predicate is regular if it can be expressed as a first-order
formula in the atomic formulas z <y and £ =0 (mod k). The terminology is jus-
tified by the fact that any second-order monadic sentence that uses these numerical
predicates is regular, while any nonregular numerical predicate can be used to define
a nonregular language. For example,

z+y=z (mod?7)
is a regular numerical predicate, while

rT+y==z

26 H. STRAUBING ET AL.

is not. Let us denote by Reg the class of all regular numerical predicates, and by
LReg the class of all regular languages. The last theorem can then be restated as

FO[N] N Lgeg = FO[Reg].

Let us see what this means. It may happen, of course, that a sentence using
nonregular numerical predicates defines a regular language. This occurs, for instance,
with the sentence

VzIy(z|y A Qoy)-

Here ‘|’ has the usual meaning ‘divides’. The language defined is the regular language
0(0 + 1)*. Now in this case we could just as well have written

Vay(y <z A Qoy),

which uses only regular numerical predicates. The theorem says that this phe-
nomenon is general: Whenever we define a regular language by a first-order sentence
using nonregular numerical predicates we can define the same language by a sentence
that contains only regular numerical predicates.

Thus Theorem 5.3, which at first glance concerns lower bounds for boolean cir-
cuits, is equivalent to a very simple and natural-looking principle about the definabil-
ity of regular languages in first-order logic. Is there a direct proof of this principle?
If we could prove

FO[N]N Lgeyg = FO[Reyg]

using only algebraic and automaton-theoretic considerations, then we would obtain
as a consequence a new proof that the language MOD, is not in AC°.

But there is more: There is considerable evidence that the analogous principle
holds for modular quantifiers, and these are provably equivalent to open problems
about circuit complexity. For example, we have:

Theorem 5.4 The following are equivalent:
(a) ACC® # NC*.
(b) (FO + MOD)[N]N LReg = (FO + MOD)[Reg].

Let us see why this is so. If ACC® = NC*, then ACC® contains all regular lan-
guages; in particular, ACC® contains regular languages with nonsolvable syntactic
monoids. Thus

ACC® N Lpey = (FO + MOD)[N]N Lpey

is strictly larger than (FO + M OD)[Reg], which contains only languages with solv-
able syntactic monoids. Conversely, if (FO + M OD)[Reyg] is strictly contained in
(FO+MOD)[N]NLEe,y, then ACC° contains a regular language with a nonsolvable
syntactic monoid. It follows from the results in Section 4 on complete problems for
NC! that ACC? contains every language in NC*.

There are analogous equivalences for CC? and for the classes ACC®(q) and CC(q)
for a fixed modulus ¢ > 1:

LOGICS, MONOIDS, AND CIRCUITS 27

Theorem 5.5 The following are equivalent:
(a) CC° does not contain the AND function.
(b) MOD[N]|N Lreyg = MOD[Reg].

Theorem 5.6 Let ¢ > 1. The following are equivalent:
(a) ACC®(q) does not contain the language

{a;---a, € {0,1}*: Zai =0 (mod p)},

i=1

where p is any prime that does not divide q.
(b) (FO 4+ MOD,)[N]|N LReyg = (FO + MOD,)[Reg].

Theorem 5.7 The following are equivalent:
(a) CC°(q) contains neither the AND function nor the language

{ay---an € {0,1}* : Zai =0 (mod p)},

where p is any prime that does not divide q.
(b) MODy[N]N Lgeyg = MOD,y[Reg].

Moreover, in the last two theorems, the pairs of equivalent statements are known
to be true when ¢ is prime, because we possess direct proofs of the statements con-
cerning circuits. We regard this as evidence that the equivalent pairs of statements
are true in general. We thus conjecture that for any set Q of ordinary and modular
quantifiers, Q[N]N Lrey, = Q[Reg]. Again, this is a general principle concerning the
logical definability of regular languages, equivalent to a quite different-looking prin-
ciple concerning constant-depth circuits. The cases where it is known to be true are
proved using the equivalent circuit formulations. We would like to see a direct proof
of the general statement, one that brings to the fore the automaton-theoretic and
algebraic considerations. When N is replaced by the union of the regular numerical
predicates and the class of all monadic numerical predicates, the conjecture is known
to be true ([28]).

References

1. M. Ajtai, Ei formulae on finite structures, Annals of Pure and Applied Logic 24 (1983), pp.
1-48.

2. D.A.M. Barrington, Bounded width branching programs recognize exactly those languages in
NC1, J. Computer and Systems Science 38 (1989), pp. 150-164.

3. D. A. M. Barrington, K. Compton, H. Straubing and D. Thérien, Regular languages in NC1,
J. Comp. Syst. Sci. 44 (1992), pp. 478-499.

4. D.A.M. Barrington, N. Immerman and H. Straubing, On uniformity within NC!, J. Computer
and Systems Science 41 (1990), pp. 274-306.

5. D.A.M. Barrington, H. Straubing and D. Thérien, Non-uniform automata over groups, Infor-
mation and Computation 89 (2) (1990), pp. 109-132.

6. D.A.M. Barrington and D. Thérien, Finite monoids and the fine structure of NC!, J. of the
Association for Computing Machinery 35 (1988), pp. 941-952.

28

10.

11.

12,

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

H. STRAUBING ET AL.

D. Beauquier and J. E. Pin, Factors of words, Proc. 16th ICALP, Springer Lecture Notes in
Computer Science 372 (1989), pp. 63-79.

A. Borodin, D. Dolev, F.E. Fich and W. Paul, Bounds for width two branching programs,
Proc. of the 15 ACM Symp. on the Theory of Computing (1983), pp. 87-93.

J.A. Brzozowski, R. Knast, The dot-depth hierarchy of star-free languages is infinite, J. Com-
put. System Sci. 16 (1978), pp. 37-55.

J.R. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundl. math.
6 (1960), pp. 66-91.

R.S. Cohen, J.A. Brzozowski, Dot-depth of star-free events, J. Comput. System Sci. 5 (1971),
pp. 1-15.

S.A. Cook, A taxonomy of problems with fast parallel solutions, Information and Computation
64 (1985), pp. 222 .

S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, New York 1976.
C.C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer.
math. Soc. 98 (1061), pp. 21-52.

R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in R. Karp,
ed., The Complexity of Computation, STAM-AMS Proceedings, vol. 7, American Mathemati-
cal Society, Providence, Rhode Island, 1974.

M.L. Furst, J.B. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Syst. Theory 17 (1984), pp. 13-27.

Y. Gurevich and H. Lewis, A logic for constant-depth circuits, Information and Control, 61
(1984), pp. 65-74.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Compu-
tation, Addison-Wesley (1979).

N. Immerman, Languages that capture complexity classes, SIAM J. Computing 16 (1987),
pp. 760-778.

W. Maurer and J. Rhodes, A property of finite simple non-abelian groups, Proc. Amer. Math.
Soc. 16 (1965), pp. 552-554.

P. McKenzie, P. Péladeau and D. Thérien, NC': the automata-theoretic viewpoint, Compu-
tational Complezity 1 (1991), pp. 330-359.

R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge, Mass. 1971.
D. Perrin, J.E. Pin, First-order logic and star-free sets, J. Comput. System Sci. 32 (1986),
pp- 393-406.

J.-E. Pin, Varieties of Formal Languages, Plenum Press (1986).

J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure and Applied Algebra 62
(1989), pp. 227-268.

M. P. Schiitzenberger, On finite monoids having only trivial subgroups, Information and
Control 8 (1965), pp. 190-194.

R. Smolensky, Methods in the theory of lower bounds for boolean circuit complexity, Proc. of
the 19 ACM Symp. on the Theory of Computing (1987), pp. 77-82.

H. Straubing Circuit complexity and the expressive power of generalized first-order formulas,
in Proc. 19th ICALP, Springer Lecture Notes in Computer Science 623 (1992), pp. 16-27.
H. Straubing, Finite Automata, Formal Logic, and Circuit Complezity, Birkhduser, Boston,
1994.

H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups,
Ph. D. Thesis, UC Berkeley, 1978.

H. Straubing, A generalization of the Schiitzenberger product of finite monoids, Theoretical
Computer Science 13, pp. 107-110.

H. Straubing, D. Thérien and W. Thomas, Regular languages defined with generalized quan-
tifiers, in Proc. 15th ICALP, Springer Lecture Notes in Computer Science 317 (1988), pp.
561-575.

D. Thérien, Classification of finite monoids: the language approach, Theoretical Computer
Science 14 (1981), pp. 195-208.

D. Thérien and A. Weiss, Graph congruences and the wreath product, J. Pure and Applied
Algebra 36 (1985), pp. 205-215.

W. Thomas, The theory of successor with an extra predicate, Math. Annalen 237 (1978), pp.
121-132.

W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25 (1982),

37.

38.

39.

LOGICS, MONOIDS, AND CIRCUITS 29

pp- 360-376.

W. Thomas, An application of the Ehrenfeucht-Fraissé game in formal language theory, Bull.
Soc. Math. de France 16 (1984), pp. 11-21.

W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science (J.
v. Leeuwen, ed.), Vol. B, Elsevier Sci. Publ., Amsterdam 1990, pp. 133-191.

W. Thomas, The Ehrenfeucht-Fraissé game in theoretical computer science, in: TAPSOFT
93 (M.C. Gaudel, J.P. Jouannaud, eds.), Springer Lecture Notes in Computer Science 669,
pp- 559-568.

