
Lecture Notes: Floating-Point Numbers

CS227-Scientific Computing

September 8, 2010

What this Lecture is About

I How computers represent numbers

I How this affects the accuracy of computation

Positional Number Systems

I What do we mean when we write a number like 23708? This
is shorthand for

2× 104 + 3× 103 + 7× 102 + 8× 100.

I Each digit has a value, but the value is weighted by the
position the digit is in.

I The weight associated to each position is a power of ten, so
this is a radix ten or base ten positional number system.

I Every positive integer has a unique representation in this
scheme, and we only need a fixed repertory of ten digits to
represent arbitrarily large numbers.

I Observe that the system practically forces you to have a
symbol for zero!

Positional Number Systems

I This system originated in India between the 4th and 6th
centuries AD, then spread to the Arab world in the 8th and
9th centuries, and to Europe as early as the 10th century.
(This explains the terms Hindu-Arabic numerals and Arabic
numerals.)

I A positional number with sixty as a radix was developed by
the Babylonians as early as 3000 BC. The Maya of Central
America used a radix twenty positional number system dating
from the first century BC.

I Computers use a radix two, or binary system.

Integers in Binary

I There are only two digits, 0 and 1. These are called bits:
“bit” is a contraction of “binary digit”.

I For instance
110100101

is the binary representation of 28 + 27 + 25 + 22 + 20, which is
four hundred twenty-one.

I Sometimes, to keep the radices straight, you will see the
equation written as

110100101two = 421ten,

or something similar.

I Everything in a computer’s memory—numbers of many
different kinds, text, images, audio, program instructions—is
represented as as sequences of bits.

I Everything.

Hexadecimal Notation

I It is hard to read something like 110100101 at a glance.
Hexadecimal notation is binary for humans, designed to solve
this problem.

I The idea is to break the bits into groups of four, beginning at
the righmost bit.

1 1010 0101

I Each group represents an integer between 0 and fifteen, which
we denote by single digit, using A, B, C, D, E, F for the vaues
ten through fifteen. So for the number above, we get 1A5:

1A5hex = 421ten.

I It’s really just radix sixteen!

But that is just part of the story, and not

how MATLAB usually represents numbers!

“Scientific Notation”

.

I You all know this.

I Distance from Earth to Sun.

1.496× 108 kilometers.

I Gravitational Constant

6.673× 10−11 m3

kg · sec2
.

I U.S. Balance of Trade Deficit

3.801× 109 dollars.

Roundoff and Precision

I Each number is rounded to show just four significant decimal
digits, or four decimal digits of precision.

I Another way to look at precision is through the relative error

|x̃ − x |
|x |

,

where x is the value we are approximating, and x̃ is the
rounded approximation.

I For example, a more accurate measurement of the mean
distance to the sun is 149597871 km, so the relative error is

(149600000− 149597871)

149597871
≈ 1.42× 10−5.

(The value 10−5 shows this is actually accurate to five digits
precision.)

I Note that relative error is not affected by choice of units.

Calculations with fixed precision

I Suppose you perform each operation between two values as
accurately as possible, but then round off the result to a fixed
precision, say two decimal digits of precision.

I You get some anomalous results, for instance

(1/3 + 1/3)− 2/3 “ = ” (0.33 + 0.33)− 0.67 = −0.1

(1.4 + 0.46) + 0.06 “ = ” 1.9 + 0.06 “ = ” 2.0.

I Note the loss of precision: the second result is NOT equal to
the sum correctly rounded to two digits of precision. On the
other hand

1.4 + (0.46 + 0.06) “ = ” 1.4 + 0.52 “ = ” 1.9,

which is correct.

IEEE Double-Precision Floating Point Representation

I MATLAB uses this by now near-universal standard to
represent numbers in a kind of binary version of scientific
notation.

I To see how this works, let’s return our earlier example of four
hundred twenty-one. This is

110100101two = 1.10100101two × 28.

I The idea is then to use 64 bits to represent the number.

I The leftmost bit represents the sign (0 for positive, 1 for
negative). The next eleven bits represent the exponent (in
this case 8), and the remaining 52 bits represent the piece
.10100101. . .. Note that there is no point in representing the
1 preceding the “radix point”. (We can’t call it a decimal
point!)

IEEE Double-Precision Floating Point Representation

I Here is the result, illustrated with MATLAB:

>> num = 421;
>> format hex
>> num
num = 407a500000000000

I If we dissect the resulting hexadecimal and write it in binary,
we see the three pieces.

0010 0000 0111 1010 0101 0000 0000 · · ·

0︸︷︷︸
sign

010000000111︸ ︷︷ ︸
exponent

101001000000 · · ·︸ ︷︷ ︸
mantissa

.

I Observe that the representation of the exponent is a bit
strange—it’s not obvious how this represents 8.

Another Example
I What is one-fifth in binary? Observe that 16× 1

5 = 3 + 1
5 , so

shifting the radix point four bits to the right should be the
same as adding 3. This gives

0.00110011001100 · · · = 1.100110011001× 2−3.

I The mantissa .100110011001 · · · should be 999 · · · in
hexadecimal but it has to be rounded after 52 bits, which can
change the final bits.

I >> num=-1/5
num = bfc999999999999a

I We parse this as

1011 1111 1100 1001 1001 · · · 1010,

or

1︸︷︷︸
sign

01111111100︸ ︷︷ ︸
exponent

1001100110011001 · · · 10011010.︸ ︷︷ ︸
mantissa

Special Values

I If you start with a positive value x and keep doubling, you will
eventually exceed the largest representable value. (Overflow.) The
result will appear as Inf.

I If instead you keep dividing by 2, you will eventually get a result
smaller than the smallest representable positive number.
(Underflow.) The result will appear as 0. You should note that in
the scheme described above, 0 is not actually representable, since it
cannot be written in the form 1.xxxx · · · × 2exp. However the bit
pattern 00 · · · 0 is reserved to represent this value.

I If you try, say, to evaluate 0/0, you will not get an error message.
Instead the result will be represented by a special bit pattern, which
appears as NaN (‘Not A Number’).

I A measure of the precision of the system is given by the smallest
positive number x such that 1 + x gives a different value than 1.
This is called machine epsilon. Note that this is NOT the same
thing as the smallest representable positive number.

I In the IEEE standard, the exponent can vary between −210

and 210 − 1 meaning that the maximum value representable is
on the order of 21000 ≈ 10300, and the minimum representable
positive value about 10−300. (But there’s a catch here—see
Assignment 2.)

I Machine epsilon, on the other hand, is 2−52 ≈ 2× 10−16. If
you add two numbers and one is more than 1016 times the
other, the smaller number will have no effect on the sum.

I See the floatgui application in Moler’s book for a look at
the floating-point system with toy parameters (small precision
and small range on the exponent).

Loss of Precision

I When MATLAB performs an arithmetic operation on two
floating-point numbers, it computes the result precisely, then
rounds it to the nearest value representable with the given
precision.

I This leads to some anomalous results. For instance, try
evaluating

1/10+1/10+1/10-3/10

in MATLAB.

I After many iterations, precision can erode. One particular
situation to watch out for is addition of two quantities of very
different magnitudes. Most of the bits of precision of the
smaller value will be lost.

I Another is catastrophic cancellation, when you take the
difference of two quantities of nearly equal precision.

Example of Catastrophic Cancellation

I Let’s plot the polynomial (x − 1)8 in an interval about 1:

I >> ezplot(@(x)(x-1).^8,[0.99,1.01])

This is what you’d expect.

Example of Catastrophic Cancellation

I Suppose you expanded the polynomial and wrote it in the
form:

x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x + 1

I >> f=@(x)(x.^8-8*x.^7+28*x.^6-56*x.^5+70*x.^4-56*x.^3+
28*x.^2-8*x+1);
>> ezplot(f,[0.99,1.01])

The wild oscillation in the graph is due entirely to magnification of
roundoff error when we find the difference between two nearly
equal large quantities.

