
CSCI3390-Assignment 4.

due October 31

A whole bunch of questions about the little programming languages. You
don’t have to do all of them. A ’perfect’ paper is 100 points.

Some of the problems below (labeled P) are pencil-and-paper questions, others
(labeled C) require that you write and run code, which you will submit as separate
files. For the tiny Python fragment, submit just a single code file: this should
be the file recursive function land.py posted on the website, with the
functions that you write appended. Make sure that you ‘cheat-check’ your code—
I will! For the λ-calculus problems, you should likewise append your answers to
the file lambdaland.py, which I provide.

Problems 6,7,20 and 21 are all worth 20 points. Problems 4,5 and 13 are worth
15 points. The rest are all worth 10 points.

1 Tiny Python (aka Rubber Boa)
1. (P) Show how to implement the standard Python if-else construction in

tiny Python. To be precise, suppose f,g,h are functions of one variable
that have already been defined. Write a function H(x,y) that returns f(y)
if x=0, g(y) if x=1 and h(y) otherwise. This is required in the proof
that Turing machines can be simulated in Tiny Python. That is, write the
equivalent of the standard Python

def H(x,y):
if x==0:

z=f(y)
elif x==1:

z=g(y)
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else:
z=h(y)

return z

2. (C) Write a function power(x,y) that returns xy. (If x = y = 0, the
function should return 1.)

3. (C) Write a function equals(x,y) that returns 1 if x and y are equal,
and 0 otherwise. This should show you how to encode while loops like
while u!=1, which we required in the proof that Turing machines can be
simulated in the tiny Python language.

4. (C) Write a function prime(x) that returns 1 if x is prime, and 0 other-
wise. Do this without using while.

5. (C) Write a function log(x,y) that returns the largest integer z such that
yz ≤ x. Do this without using while

6. (P) This problem is more theoretical. We want a careful proof of the asser-
tion made in the notes that functions computable in the tiny Python language
are all partial recursive functions (i.e., obtainable from 0 and increment
through application of composition, primitive recursion, and µ-recursion).
The converse assertion, that every partial recursive function is computable
in the programming language, was justified in the notes by the fragments of
code implementing for and while.

To do this, consider a sequence σ of lines of the programming language. Let
x1, . . . , xk be variables that include all the variables in the sequence σ. Then
executing σ updates the values of these k variables, essentially computing
k different partial functions

xi ← fi(x1, . . . , xk).

Show by induction on the length of the sequence σ that each of these func-
tions is partial recursive.

7. (P) Another ‘theory’ problem: Suppose I revise the apparatus of the pro-
gramming language so that it has no while or for loops. However, I will
allow a proper decrement operation (which in Python is v=max(0,v-1)),
an if statement that has the form if v==0: STATEMENT and recur-
sive function calls: That is, a function is allowed to call itself. Show that this
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programming language is also computationally universal. To do this, show
that every partial recursive function can be implemented this way: Essen-
tially this boils down to showing that primitive recursion and µ-recursion
can both be implemented through recursive function calls.

2 Counter Machines
I did not include any sort of subroutine ability in the counter machine simulator,
so each solution to the problems below is a complete program. Nonetheless, by
means of some clever copying and pasting, you can save yourself a lot of typ-
ing. For instance, multiplication has adding somewhere inside, and powering has
multiplication.

8. (C) Write a counter machine program that starts with a value x in counter
a (with all other counters assumed to be zero) and finishes with the value x
in counters a and b. This trick for ‘copying’ values will be useful in solving
some of the other problems.

9. (C) Implement ‘proper subtraction’ as a counter machine program. Your
program should start with its arguments x and y in counters a and b, and
finish with max(x− y, 0) in in counter a. .

10. (C) Implement multiplication as a counter machine program. Your program
should start with its arguments in counters a and b and finish with its result
in counter a.

11. (C) Implement powering as a counter machine program. Your program
should start with its arguments in counters a (base) and b (exponent) and
finish with its result in counter a.

12. (C) Implement integer division as a counter machine program. Your pro-
gram should start with its arguments in counters a and b (divisor) and finish
with its results in counter a (quotient) and b (remainder).

13. (C) Implement primality testing as a counter machine program. Your pro-
gram should start with its argument in counter a and finish with 1 (prime)
or 0 (composite) in counter a. (The result should be 0 for input 0 and 1.)
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3 FRACTRAN
14. The FRACTRAN program

[2]

when applied to the initial value 1 = 20 produces the infinite sequence

21, 22, 23, . . . .

That is, in terms of our convention on the encodings of inputs and outputs,
it is generating the sequence

1, 2, 3, . . .

Write a FRACTRAN program with an infinite loop that generates the se-
quence

1, 0, 1, 0 . . . .

15. Write a FRACTRAN program that computes the maximum of its two argu-
ments. The answer should

16. Write a FRACTRAN program that computes the minimum of its two argu-
ments.

4 λ-calculus
For the first three problems below, there is a paper-and-pencil part, and a pro-
gramming part. For the paper-and-pencil part, write the required function using
standard λ-calculus notation (you can use the abbreviation λxy.E for λx.λy.E).
Then demonstrate a complete calculation. For instance, with the OR problem
below, you should demonstrate that

OR T F = T

and with the multiplication problem, you should show why

MUL m̄ n̄ = mn.

In addition, you should implement the function in Python, imitating the examples
in lambdaland.py. There are examples to show you how to test your answer when
the function returns a boolean, and when it returns an integer.
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17. Implement and test the OR function.

18. Implement and test the multiplication function.

19. We can define the function ISZERO by

λz.z(λx.F)T.

Demonstrate that
ISZERO 0̄ = T

and that
ISZERO n̄ = F

whenever n > 0.

20. This is harder, but there is a road map below. We would like to implement
the predecessor function PRED. If n is a nonnegative integer, we should
have

PRED 0̄ = 0̄

PRED n̄ = n− 1 if n > 0

Here are steps you can follow to do this: We will use pairing iteratively to
create this sequence of pairs:

0 = ((0̄, 0̄), 0̄),

1 = (0, 1̄)

2 = (1, 2̄),

etc. Write a function BUILD such that

BUILD n̄ = n.

We then can obtain PRED as

PRED n̄ = second( first(BUILD n̄)).
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21. The preceding problem used pairing and Church numerals to compute the
predecessor function. You can also use these to implement primitive recur-
sion in general. In the problem, you will use this approach to implement the
factorial function. The idea is to create the function

F (n) = (n!, n+ 1)

and project onto the first component. F is obtained by applying a function
g n times to the pair (1, 1), where

g(m, k) = (mk, k + 1).
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