
CSCI3390-Assignment 5.

due November 29

Once again, a lot of questions, this time about polynomial-time reductions and
NP-completeness. And, again, you don’t have to do all of them. A ’perfect’ paper
is 100 points. Every problem is worth 20 points.

1 Boolean satisfiability
1. Consider the propositional formula

(p̄ ∨ q̄) ∧ (p ∨ r) ∧ (p ∨ r̄) ∧ (q ∨ r).

Use the polynomial-time algorithm for 2-SAT to find a satisfying assign-
ment for this formula. How many such assignments are there? (It is easy
enough to write down an assignment–but I want you to apply the algorithm
here and construct the graph.) What happens if we add the clause ¬p ∨ q?

2. In which I prove P = NP and win a million dollars. Just as every proposi-
tional formula is equivalent to a formula in conjunctive normal form, every
propositional formula is also equivalent to a formula in disjunctive normal
form. This is an OR of ANDs, where CNF is an AND of ORs. For example,

(p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r)

is in DNF.

(a) Let DNF-SAT be the problem where the input is a formula in disjunctive
normal form, and the output is yes if the formula is satisfiable, no otherwise.
Show that DNF-SAT is in P–the algorithm is really simple.

1

(b) I shall now prove that P=NP. Given a formula in CNF, I convert it to
DNF and apply the algorithm of part (a). This is now a polynomial-time
algorithm for SAT. You’re welcome. I’ll take my million dollars now.

Surely something is wrong here...

3. Boolean satisfiability for general formulas. Suppose we ask the more gen-
eral question: given a propositional formula φ, not necessarily in CNF, is it
satisfiable? We know that this problem (which we will call CIRCUIT-SAT,
for reasons to be explained shortly) is in NP, and since we know SAT, and
even 3-SAT, are NP-hard, we can conclude

CIRCUIT-SAT ≤P 3-SAT.

The goal of this problem is to demonstrate this reduction without recourse
to the Cook-Levin theorem, but by directly constructing a 3-CNF formula
from φ. As the preceding problem might tip you off, it is not good enough
to simply convert φ to CNF!

Here is the idea: We can represent any formula by a directed acyclic graph
in which the source nodes are literals, and the interior nodes are labeled
∨,∧,¬. This graph is called a circuit, because it is exactly like one of those
digital circuits built from AND, OR and NOT gates. (A circuit is more
general and usually more succint than a formula, because we can use the
same subcircuit’s output several times without adding to the size.)

For example, the formula

(p ∨ (q ∧ r̄)) ∧ (p̄ ∨ q ∨ r̄)

is represented by the circuit shown in Figure 1. Observe that an assignment
of truth values to the variables of the formula propagates to an assignment
of truth values to the gates; the original assignment is satisfying if the final
gate (the one at the right) gets the value True.

(a) Show how to turn the circuit of Figure 1 into a 3-CNF formula that is
satisfiable if and only if the original formula is. Your new formula should
have the original variables p, q, r, as well as variables corresponding to each
of the AND and OR gates. The clauses will give the relations that must
hold between these gate variables. You should check that the satisfying
assignments match up.

2

Figure 1: Circuit corresponding to the formula (p ∨ (q ∧ r̄)) ∧ (p̄ ∨ q ∨ r̄)

(b) Describe the general procedure for turning a circuit into a 3-CNF for-
mula. Why is this a polynomial-time reduction to 3-SAT?

2 Graph coloring
Just a reminder, k-COLORABLE is the problem whose input is a graph, and
whose output is ‘Yes’ if and only if the graph can be colored using k colors,
in such a manner that adjacent vertices do not get the same color.

4. Show that
3-COLORABLE ≤P 4-COLORABLE.

Remember, you have to show, given a graph G, how to construct a graph G′

such that G is 3-colorable if and only if G′ is 4-colorable. (This is a very
simple construction!) Make sure you explain why the construction can be
carried out in polynomial time.

5. Suppose that we have a polynomial-time algorithm for 3-colorability. Does
this actually imply the existence of a polynomial-time algorithm to find a
coloring? The answer is yes, and we will give two approaches to this. First,
use the fact stated in class, but not proved, that 3-COLORABLE is NP-
complete, so if there is such an algorithm for colorability, then SAT is in P.
Now apply some results we proved in class...

6. Here, and in the next problem, you will show how to find a coloring from an
algorithm for existence of a coloring without appealing to the NP-completeness
of 3-colorability. Consider the following problem. The input is a graph G
that has been partially colored with three colors—that is, some subset of the

3

vertices have been colored blue, green, and red. The output is yes if and
only if this partial coloring can be extended to a 3-coloring of all the ver-
tices. Show that this problem is polynomial-time reducible to 3-colorability.
(HINT: Add a little triangle gadget to to the graph.)

7. Now use the result of 6 to show that a polynomial-time algorithm for 3-COLORABLE
implies that there is a polynomial-time algorithm that finds a coloring if one
exists. Again, do this without appealing to NP-completeness.

3 Hamiltonian paths
8. This is a question about the proof of NP-completeness of directed Hamilto-

nian path: Draw the gadget for (p∨ q)∧ p̄∧ q̄. What does the graph tell you
about the formula, and vice-versa?

9. The notes contain, as a final step of the proof of the NP-completeness of
Hamiltonian path, a reduction from the directed version of the problem to
the undirected version, through the use of little 3-vertex gadgets to represent
each vertex of the directed graph. When I first saw this, I thought the middle
vertex of these gadgets was unnecessary. But later I realized that if we used
2-vertex gadgets, connected the same way, then Hamiltonian paths in the
two graphs would not correspond, so this transformation would not be a
reduction from one problem to the other. Give an example that shows this.

10. We now go back to our original version of the problem, let’s call it HAM, in
which the input is an undirected graph G and a pair of vertices i, j, and the
output is Yes if and only if there is a Hamiltonian path form i to j. There is
also the Hamiltonian Circuit problem, call it HAMCIRCUIT, in which we
ask whether a given graph has a Hamiltonian circuit. Show that

HAM ≤P HAMCIRCUIT,

and conclude that HAMCIRCUIT is also NP-complete. (This is another
very easy reduction, much in the spirit of the very easy reduction in Problem
4.)

11. Since HAM is in NP, the Cook-Levin Theorem implies that it is polynomial-
time reducible to SAT. Show this directly, by transforming a graph, together
with designated start and end vertices i and j, into a propositional formula

4

that is satisfiable if and only if there is a Hamiltonian path from i to j.
(HINT: Use variables vk,`, where vk,` is true if and only if vertex ` is the kth

vertex on a Hamiltonian path. The clauses will encode the required prop-
erties of such a path.) Make sure that the end result is in CNF and that the
construction can be carried out in polynomial time.

4 Clique
12. An instance of the CLIQUE problem is the graph G and an integer k ≤
|V (G)|. The output is yes if and only if there is a clique with k-vertices—
that is k vertices each adjacent to the other k − 1. Explain carefully why
this problem is in NP. (You can even supply pseudocode, or real code, that
verifies a witness efficiently.)

13. Suppose that instead we fix the value of k, so that it is not a part of the
problem instance. For instance, we can set k = 5 and pose the problem of
whether a given graph has a clique of size 5. Show that this problem is in P.

14. Show, what we claimed in class, that CLIQUE is NP-hard, by proving the
existence of a polynomial-time reduction from SAT to CLIQUE. The idea is
this: Each literal in each clause is a vertex of the graph (so, for example, if
the literal p̄ occurs in two different clauses, then there will be two different
vertices labeled p̄). Draw an edge between every pair of vertices that belong
to different clauses, except if one of the vertices is the negation of the other.
Example: If the formula is

p̄ ∧ (p̄ ∨ q) ∧ (p ∨ q)

then the vertices can be named p̄1, p̄2,q2, p3, q3. The graph will have edges
between p̄1 and p̄2, between p̄1 and q3, and many other pairs. But there will
be no edge between p̄2 and q2, because they belong to the same clause, and
no edge between p̄1 and p3, because they are negations of one another.

Prove that the graph has a k-clique, where k is the number of clauses, if
and only if the formula is satisfiable. Use this to conclude (carefully!) that
CLIQUE is NP-hard, and thus NP-complete. Draw pictures!

5

5 Compositeness
15. Unlike the other problems listed here, testing compositeness—or, what is

the same thing, testing primality—does have a polynomial-time algorithm.
But this does not mean that there is a polynomial-time algorithm for finding
a witness to compositeness, that is, a factorization of the given number.
In fact it is believed that this problem has no polynomial-time algorithm.
Consider instead the following problem: The input consists of integers k ≤
N, coded in binary or decimal, and the output is Yes if and only if N has a
factor 1 < m < k. Show that if there is a polynomial-time algorithm for this
problem, then there is a polynomial-time algorithm for factoring an integer
into smaller factors. (HINT: Binary search.)

16. Use the above to prove that if P=NP, then there is a polynomial-time algo-
rithm for factoring. (Many cryptographic protocols depend for their security
on factoring being a hard problem, so if P=NP, these systems fall apart.)

6

