
CSCI3390-Lecture 1:What is a Computation?
The Turing machine model.

August 30, 2018

1 Summary
• A sort of informal introduction to Turing’s solution to the ‘What is an algo-

rithm?’ problem, before the formal development.

• Two kinds of computational problems: decision problems (yes-no answer),
and search or function-evaluation problems (longer answer).

• Inputs to problems are encoded as strings of symbols over a finite alphabet
of symbols. (Notation: Σ∗ denotes the set of all strings over the alphabet
Σ.)

• A decision problem is identified with the set of input strings that give a
‘yes’ answer (a language L ⊆ Σ∗). A search problem is identified with a
function f : Σ∗ → Γ∗, where Γ is the output alphabet. Solving an instance
of a decision problem means determining if w ∈ L for the given input w.
Solving an instance of a search problem means evaluating f(w).

• A general solution is an algorithm for determining w ∈ L, or calculating
f(w) for any given input w.

• Turing machine: mathematical model of a machine executing an algorithm.
It is claimed that any algorithm can be implemented with a Turing machine,
and thus this provides a rigorous mathematical definition of what a compu-
tation is. This claim is called the Church-Turing thesis.

1

1 0 1 1
+ 1 1 0

1 0 0 0 1

Table 1: Addition in binary. The inputs are written in rows 1 and 2, the outputs in
row 3.

2 What is an algorithm? An informal introduction.
One of the main goals in the first part of this course is the proof that there are
certain computational problems that are undecidable, in the sense that there is no
algorithm for their solution. Now if I tell you that there is an algorithm for a
problem, it is usually sufficient to describe it and to prove that it does what I claim
it does—there is rarely any question of whether the procedure presented really
constitutes an algorithm. Here we typically take the attitude ‘I know one when I
see one’.

But if I want to prove that there is no algorithm to solve a problem, then I
need a precise definition that perfectly captures this intuitive concept. This def-
initional problem was solved in the 1930’s by three different mathematicians—
Alonso Church, Kurt Gödel, and Alan Turing—in three very different-looking
ways. Remarkably, all three approaches turned out to be equivalent, although this
is far from obvious when you read the descriptions. We will begin with Turing’s
solution, which is the easiest to grasp and the most philosophically satisfying.

We begin with one of the first algorithms you learned—how to add two multi-
digit integers. You learned this using decimal integers, of course, but we will work
in binary. There’s no fundamental difference, but the binary version has a shorter
description.

Let’s do a little thought experiment: We’ll solve this problem by the con-
ventional method, but imagine that you can only see one digit at a time—maybe
the summands are written in the sand on a very long stretch of beach (it’s still
summertime here!) You begin on the top row of the rightmost column and head
downward, keeping track of a running sum of the bits that you have seen so far.
When you arrive at the bottom row, you write the low-order bit of the sum in
the blank space. If that sum was greater than 1, then you reset the running sum
you’re remembering to 1, otherwise to 0. You now go back up two rows, turn left
to the next column, and repeat the procedure with the second column from the
right. This continues until you reach a column in which there is no bit in the first

2

two rows; in this case you either write 1 into the third row of this column (if the
running sum is 1), or nothing at all, and then your work is done.

You only have to keep a few things in your head: The running sum, which can
be either 0, 1, 2(=10 in binary) or 3(=11); where you are in the procedure (which
row, whether you are heading up or down); and to keep track of whether you have
seen a blank entry in a column. Significantly, you do not need to keep track of
which column you are on—the algorithm is the same whether the summands each
have only two bits or a million.

The entire procedure is described in the decision diagram shown below. Each
node represents what is in your memory at a given step. This is the ‘state’ of
the computation. The state, together with the input symbol you are standing on,
determine what the next state will be, and what action (move up, down, or left;
write 0 or 1) you will take.

Just so you understand how this diagram works: The computation is in the
state indicated by the node labeled ‘row 2; down;1’ if you are standing on the
second row, heading downward, and the running sum in your head is 1. If the
space you are standing on is blank, or contains a 0, then the instruction marked on
the edge says to head downward and adjust the state accordingly, so that you are
now in row 3, with a running sum that is still 1. An edge marked with a ‘write’
instruction, such a ‘1:write 0,up’, means, ‘if you’re reading a 1, write a 0 in the
space you’re currently on, then move up’. This only occurs in row 3. It is a very
good idea to walk through a small example with this diagram and carry out the
complete computation.

Turing had three important insights about algorithms that can be described in
this way.

The first (and this is really the critical one) is that every algorithm can be
described this way! We will return to this point later, but for the time being, think
of any algorithm that you have learned, either in a grade-school or high-school
math class, or a computer science class, or in some other context. It is usually first
described to you with a little pencil-and-paper, or blackboard example; with with
a little bit of reflection (and some rather tedious attention to detail) you can present
it in the form given above. The claim that any computation can be described in
this form is not something that we can prove, because it depends entirely on an
intuitive notion of what constitutes an algorithmic procedure.

The second insight is more modest, and is really there only to simplify the
theory: It is that the two-dimensional nature of the workspace is not essential.
The whole procedure could be carried out by writing the summands on a one-

3

Figure 1: State-transition diagram for the binary addition problem. This is a two-
dimensional version of the Turing machine model.

4

dimensional tape, say as
1011 + 110 =

There will be a lot of shuttling back and forth, and making little scratches in the
sand to mark digits that we have already visited. The whole thing will take longer,
but it can still be done.

The third, which we will take up later, is that we don’t need a different diagram
for each different algorithm–in a sense, there is a single algorithm that includes
them all.

3 What is a computational problem?

3.1 Some computational problems. A more formal look.
These are like the example problems in Lecture 0.

1. Given two non-negative integers m,n, find the sum m+ n.

77 + 231 7→ 308.

2. Given an integer n > 1, determine if n is prime.

91 7→ no

97 7→ yes

3. Given a graph G, determine if there is a path that visits every vertex exactly
once. (a Hamiltonian path.) The pictured graph has a Hamiltonian path
(find it).

4. Given a graph G, find a Hamiltonian path, if one exists.

Problems 2 and 3 are decision problems: the answer is ‘yes’ or ‘no’. Problems
1 and 4 are search problems, or function-evaluation problems.

5

Figure 2: Find a Hamiltonian path–a path that visits every vertex exactly once.

3.2 Encoding problem instances as strings
If we want to prove something about computational problems, we will need a
formal definition of such problems. Problem instances (that is, the input—the
pair of summands to add, the graph to test, the polynomial in several variables,
etc.) are always encoded as strings, or words over a finite alphabet of letters, or
symbols.

If the alphabet is Σ = {a, b}, then aaba, bbaabab, a are all words. So is ε,
which we use to denote the empty word.

Some notation: We write |aaba| = 4, |ε| = 0, etc. for the length of a word.
We write Σ∗ to denote the set of all words over Σ. Also we abbreviate using
exponential notation, for example:

aaba = a2ba, bbaabab = b2a(ab)2.

What do the encodings themselves look like? For primality testing, the prob-
lem instance is a single integer, which we can encode by its decimal representa-
tion, so that ninety-seven is encoded by the string 97. Thus a problem instance is
a word over the alphabet {0, 1, 2, 3, 4, 5, 7, 8, 9}. Of course we have some leeway
here—we can encode a problem instance in binary, or some other base, or some
different number system.

6

For the addition problem, a problem instance is a pair of integers, which we
might encode as follows:

77 + 231,

that is, as a word over the alphabet {+, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
What about graphs? There are a number of ways we might encode a graph. We

could simply list all the edges: Each edge is a pair of vertices, and if we number
the vertices in decimal, we get a word over {#, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, where #
is used to separate vertices in our list.

For example, the graph depicted in the illustration in these notes would be
encoded by

1#3#2#1#5#2#5#4#3#4#4#6#5#6,

representing the sequence

(1, 3), (2, 1), (5, 2), (5, 4), (3, 4), (4, 6), (5, 6).

There is a subtle drawback in this encoding scheme: It does not correctly encode
graphs in which there is a vertex with no neighbors.

If we wanted, we could do everything over an alphabet of two letters 0 and
1, and encode every problem instance as a sequence of bits. This is exactly how
problem instances are represented in conventional computers.

Now that we know how to encode problem instances as strings, how do we
define the problem itself? We can think of the decision problem as the set of all
problem instances for which the answer is ‘yes’. Thus the problem is a set of
strings, or a language. For instance, Problem 3 above is treated as identical with
the set of all strings that are encodings of graphs with a Hamiltonian path.

We identify a search problem not with a set of strings, but with a function
from the set of strings over the input alphabet to the set of strings over some
output alphabet. For example, the addition problem is a function

f : {+, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗.

If we let enc(m) denote the decimal encoding of the positive integer m, then the
function f is defined by

f((enc(m)) + (enc(n))) = enc(m+ n).

We stress that the argument of f on the left-hand side of the equation is a string,
and the right-hand side of the equation is a string. The ‘+’ on the left-hand side is
a letter in a string. However the expressions m, n, m+ n represent integers.

7

There is a little problem here. As described, the domain of f should be the set
of all strings over the input alphabet, but the formula defining f does not tell us
what to do on ‘bad’ inputs like + + 23 + +9 + . There are simple ways to patch
this up: We could have the value of f on such inputs be the empty string, or we
could add a special error symbol to the output alphabet.

Solving an instance of a decision problem L amounts to determining if a given
string w over the input alphabet belongs to L.

Solving an instance of a search problem f amounts to finding the value of
f(w) for a given input string w.

A general solution of the decision problem is an algorithm for determining,
given any w, if w ∈ L. A general solution of the search problem is an algorithm
for computing f(w), given any w ∈ L.

So what is an algorithm?

4 Turing Machines
Here we give a formal definition of the Turing machine model.

4.1 High-level description
• The workspace is a tape that extends infinitely in both directions, each cell

of which holds one symbol.

• At each step, there is a current position. Think of this as a ‘read-write head’
that can both read the symbol at the current position and write a symbol in
that square. Figure 3 is an impressionistic picture of a Turing machine in
operation.

• At each step, the machine is in one of a finite number of states–these cor-
respond to the nodes in the diagram representation of the algorithm that we
drew above.

• Tape symbols include both the input symbols and a finite collection of
auxillary symbols, including a special blank symbol �. At each step, all
but finitely many of the tape cells hold the blank symbol. In our two-
dimensional addition example, we only needed the original input symbols
and the blank, but if you try to do this problem in a single dimension, you

8

Figure 3: A Turing machine in action

will see that you need to use new symbols to mark when a digit of a sum-
mand has already been processed.

• At each step, the machine updates as follows: Depending on the current
state and the currently scanned input symbol, the machine erases the symbol
and writes a new symbol into that cell. (The new symbol could be the same
as the one that was erased.) It moves the current position one cell to the left
or right, and changes to a new state.

• There is a special halt state. When the machine enters this state, it stops
updating.

4.2 Turing machine–formal description-version 1
M = (Q,Σ,Γ, q0,h, δ).

Q is a finite set (set of states).
Σ is a finite alphabet (the input alphabet)
Γ is a finite alphabet, with Σ ⊆ Γ, � ∈ Γ − Σ. That is, the tape alphabet

contains the input alphabet, and at least one additional symbol, denoting a blank
cell.

q0 ∈ Q (initial state)
h ∈ Q (halt state)
δ is a function

δ : (Q− {h})× Γ→ Q× Γ× {L,R}.

9

Interpretation:
δ(q, γ) = (q′, γ′, R)

means: if current state is q and currently-scanned symbol is γ, the machine writes
γ′ in this cell (erasing original γ), changes to state q′, and changes the currently-
scanned symbol to the next tape square to the right. We could have γ = γ′, which
we typically interpret to mean ‘don’t write anything’, since the symbol in the cell
doesn’t change.

A configuration, or instantaneous description of a TM is given by the tape
contents, the current position, and the state. We could denote the instantaneous
description by a drawing like the one in the figure, provided we name the state,
but we like to have a notation that is easier to write. So if the machine is in the
pictured configuration in state q, we denote the configuration by

aaqbcab.

When we start the machine, the tape holds the input string w ∈ Σ∗, the current
position is the leftmost letter of w, and the machine is in state state q0. So the
configuration is:

q0aaba.

Suppose δ(q0, a) = (q1, X,R), then the next configuration is

Xq1aba.

We would then write
q0aaba⇒ Xq1aba.

We write
c
∗⇒ c′

if configuration c′ results from configuration c after 0 or more steps.
If c is the initial configuration q0w, and

c
∗⇒ h,

the halt state, then we say
fM(w) = w′,

where w′ ∈ Γ∗ is contents of the tape when the machine enters state h. The
function fM is what M computes. Observe though (and this is important) M
might not halt on every possible input, so fM is really only a partial function from
Σ∗ to Γ∗.

10

4.3 Example.
We will describe a Turing machineM that reads an input bit string, and halts with
the reverse of that string on the input tape. That is, for example,

fM(01001) = 10010.

The idea is this: the machine moves right until it finds the end of the input, and
marks this with the symbol #:

01001#.

A. It then moves left to the next 0 or 1 it finds, crosses it out, and ‘remembers’ the
crossed-out symbol in its state.

0100X#.

B. It moves right to the next blank cell, and writes the remembered symbol,
then moves left until it finds the #.

0100X#1.

The machine now repeats steps A and B.

010XX#1

010XX#10

01XXX#10

01XXX#100

0XXXX#100

XXXXX#1001

XXXXX#10010

If, in step A, a blank cell is found, the machine moves to the right, erasing every-
thing up to and including the #.

10010

Let’s implement this by figuring out what states we need and what the state-
transition function δ should do. In the first phase the machine moves to the right
until it finds a blank, upon which it writes the mark #, then moves left for the next
phase:

11

δ(q0, 0) = (q0, 0, R), δ(q0, 1) = (q0, 1, R), δ(q0,�) = (q1,#, L).

In the next phase, it moves left past the crossed-out symbols until it finds 0,1,
or a blank, and gets ready to move right.

δ(q1, X) = (q1, X, L), δ(q1, 0) = (q2, X,R), δ(q1, 1) = (q3, 1, R), δ(q1,�) = (q4,�, R).

If it’s in state q2 or q3, the machine moves right past all the other symbols until
it finds a blank, and writes 0 or 1, according to the state. So if γ 6= �:

δ(q2, γ) = (q2, γ, R),

δ(q3, γ) = (q3, γ, R),

But if γ = �,

δ(q2,�) = (q5, 0, L), δ(q3,�) = (q5, 1, L).

Then it moves back to the #, and repeats the computation beginning in q1.

δ(q5, γ) = (q5, γ, L),

if γ = 0 or 1.

δ(q5,#) = (q1,#, L).

If the machine is in state q4, it cleans up, erasing symbols up to and including
the #.

A complete run of the machine on the length 3 input 100 takes about 40 steps
to reach the halt state. The first few configurations are

q0001⇒ 0q001⇒ 00q01⇒ 001q0�⇒ 00q11#⇒ 00Xq3#⇒ 00x#q3�⇒ 00xq5#1

Note that δ has not been completely specified: for instance, we have not de-
fined δ(q5, X). We can set its value arbitrarily, since we can never be looking at
the symbol X in state q5. (Better yet, we might have the machine halt if it ever has
an unexpected symbol, for example a # in state 0. This could mean that the input
was prepared incorrectly. The resulting tape contents won’t make any sense, of
course–a case of ‘garbage-in, garbage-out’.)

12

We can depict the behavior of the TM compactly in a state-transition diagram,
depicted below. If δ(qi, γ) = δ(qj, β, R), then we write

γ → β,R

as the label of the arrow from qi to qj. Some conventions: We can leave off the
β if γ = β (in other words if the new symbol on the scanned square is the same
as the old one) and list several different γ before the arrow if the behavior of the
machine is the same for each of these symbols.

13

Figure 4: State-transition diagram of the Turing machine example in this section.

14

