
CSCI3390-Lecture 13: Polynomial time; the
class P

1 Polynomial versus exponential time; orders of growth
The website contains specifications for two Turing machines. One of these ac-
companied the first assignment; this is the machine that takes a string of 0’s and
1’s, and sorts it by moving all the 0’s to the left and all the 1’s to the right. A
high-level description of how it works is:

repeat:
scan right, looking for a 1 followed by 0
if no such occurrence is found, halt
otherwise swap the 0 and 1, return to the left end

of the tape

In the solutions to the first assignment, there is a very detailed analysis of how many
steps this algorithm requires, but we can make a rough ‘back-of-the-envelope’ analysis
which is actually more pertinent for our new topic: Suppose the length of the input is n.
The ‘body’ of the loop, the portion underneath the word ‘repeat’ requires no more than
2n steps—usually it will be considerably less than this, because the machine will rarely
have to scan all the way to the end of the tape to find the first occurrence of 10. The
number of passes is equal to the number of ‘inversions’ in the original input—that is, the
number of pairs of positions i < j where the ith symbol is 1 and the jth symbol is 0. The
largest possible number of inversions occurs when the input has the form 1n/20n/2. Thus
the maximum number of passes is n2/4. As a result, the number of steps is no more than

n2/4× 2n = n3/2.

But the more pertinent calculation is: ‘no worse than a constant times n2 multiplied by a
constant times n, thus bounded by a constant times n3.’ We will say that the running time
for this algorithm is O(n3) (exact definition below).

The second machine executes the following algorithm:

1



repeat:
scan right, converting 1s to 0s until a 0 is found
if no 0 is found, halt
otherwise, change the 0 to 1 and return to start

of tape

On the input 0n, the machine runs through all the possible patterns of n bits, once for
each scan. For example, with n = 3, it will produce after each scan,

000,100,010,110,001,101,011,111

Thus this machine can require as many as 2n steps (and no more than 2n·2n steps, because
each scan forward and back requires fewer than 2n steps).

Usually, in analyzing computer algorithms, we are not too much concerned with con-
stant multiples: an algorithm that requires time 2n one one machine may require time
n on another, because of a faster processor carrying out the same steps, or the constant
multiple could just be an artifact of the units of time that we use. We write

f(n) = O(g(n))

if there is some constant c > 0 such that

f(n) ≤ c · g(n)

for all sufficiently large values of n. We interpret this to mean that asymptotically, g grows
at least as fast as f. Thus if we let t(n) denote the maximum number of steps our sorting
machine executes on inputs of length n, we have

t(n) = O(n3),

since in the worst case
t(n) = n3/2

for all n. Not only is n3 an asymptotic upper bound for the running time, which is what
O(n3) means, in this case it is also an asymptotic lower bound, since n3 = O(t(n)) as
well. We say that algorithms whose running time is O(nk) for some k are polynomial-time
algorithms.

In contrast, the counting Turing machine runs much more slowly: its running time
grows exponentially in n. In fact, if a > 1 and k > 0, we always have

lim
n→∞

nk

an
= 0.

2



Figure 1: Is there a path from vertex 1 to vertex 6?

We say that nk = o(an). In general, we write f(n) = o(g(n)) if the limit of the ratio of
f(n) to g(n) is zero.

In practice, what does this mean? Our Turing machine for sorting a string of bits of
length 20 will use no more than 203 = 80, 000 steps (the true value will actually be quite
a bit less than this), while the machine for counting will use at least 220 ≈ 1, 000, 000
steps. If we try a string of length 40, the first machine will require 640,000 steps—still
quite do-able–while the second will need at least one trillion steps, which approaches the
limits of what is possible in practice.

In general, we view algorithms requiring polynomial time as feasible or tractable, and
those requiring exponential time as infeasible or intractable.

2 Example: Graphs
Earlier we discussed an algorithm for finding the shortest path in a graph. Essentially
the same algorithm will solve the problem of determining if there is a path between two
vertices:

Input: A graph G and two vertices u, v.

Output: Yes if there is a path connecting u to v, no otherwise.

We assume we have some nice encoding of the graph, perhaps in the form of adja-
cency lists. Each item below is a list of the vertices adjacent to the vertex at the head of
the list:

3



1:2,3
2:1,5
3:1,4
4:3,5,6
5:2,4,6
6:4,5

Suppose we want to determine if there is a path from 1 to 6. (There is, of course,
which is easy to see from a quick visual inspection of this tiny graph, but we want to
describe something that works in general for any graph.) The idea is to maintain a list
called a queue into which we put first the source vertex 1, then the vertices adjacent to 1,
then the vertices adjacent to those, etc. We also maintain a checklist so that we do not put
a vertex into the queue if it has already been there. Here is the algorithm:

Put 1 in the queue
Check 1 off
Repeat:

if queue is empty, halt and reject
remove first item u from the queue
for each neighbor v of u:

if v is checked off, ignore it
if v=6, halt and accept
otherwise, put v in the rear of the queue and check it off

For the graph in the example, the queue evolves as follows:

1
2 3
3 5
5 4
4

and accepts when then neighbor 6 is found. (Incidentally, the same algorithm works for
directed graphs.)

Here is a gross overestimate of the running time: If the graph has n vertices, then the
statements in the loop marked ‘repeatedly’ are executed at most n times, once for each
vertex removed from the queue. The list of neighbors of the removed vertex must be
traversed in the loop labeled ‘for’. This list has no more than n elements (actually n− 1)
so the statements under the ‘for’ are each executed no more than n times. This suggests
that our algorithm requires O(n2) steps, so this problem is solved by a polynomial-time
algorithm.

4



2.1 Polynomial-time algorithms; polynomial-time Turing ma-
chines

What if you tried to implement this algorithm with a Turing machine? You might try a
3-tape machine, with one tape used to hold the queue and another to hold the checklist. If
the encoding of the graph uses m symbols, you might need m steps to find the head of the
list for a given vertex. Further, hunting for the end of the queue and to find if a vertex has
been checked off may itself require n steps. Taking everything into account, the number
of steps is then something like O(mn + n3) = O(n3), since m < n2. If we converted
this into an equivalent one-tape machine, we would need O(n6) steps. Since the length
m of the input is always greater than or equal to n, this machine runs in time O(m6). But
the point is, this is still polynomial time. So our official definition of a polynomial-time
algorithm is a Turing machine that answers ‘Yes’ or ‘No’ on every input, and does so in
O(mk) steps, where m is the length of the input and k is some positive integer. Such a
TM is called a polynomial-time Turing machine. But the real point is this:

Polynomial time on a Turing machine is the same as polynomial time for
pencil-and-paper algorithms.

Usually the way we will prove something in in polynomial time is by giving descriptions,
analogous to the one above, of a pencil-and-paper algorithm. The transformation of such
an algorithm to a single-tape Turing machine will involve the usual tedious back-and-forth
manipulations, but the blowup is not worse than polynomial.

3 Example problems with Sudoku
We want to analyze the time complexity of algorithms for two problems related to Sudoku
puzzles. When we analyze complexity we are usually interested, as in the examples above,
in how the running time grows as a function of the input size. It doesn’t make sense to say
something is a ‘polynomial-time’ algorithm if the input size is fixed. So we need to talk
not just about the usual 9 × 9 Sudoku, but a generalized version of the puzzle in which
the grid is N2 × N2, and the entries are integers in the range 1, . . . , N2. This requires
no change in the rules. (The standard version is N = 3, and I have seen giant Sudoku
puzzles with N as large as 6.)

The first problem is

Input: A completely filled N2 ×N2 Sudoku grid.

Output: Yes if the grid represents a legal solution, No otherwise.

The second takes inputs as they are usually given, with a partially-filled grid.

5



Input: A partially-filled N2 ×N2 Sudoku grid.

Output: Yes if it is possible to complete this grid to a solution, No otherwise.

Below is a pencil-and-paper algorithm for the first problem. It maintains a checklist
containing each of the integers 1, . . . , N2.

for each row:
clear checklist
for each entry k in the row

if k is checked off, halt and reject, otherwise check off k
for each column:

clear checklist
for each entry k in the row

if k is checked off, halt and reject, otherwise check off k
for each subsquare:

clear checklist
for each entry k in the row

if k is checked off, halt and reject, otherwise check off k
halt and accept

The algorithm requires N2 checks for each of the N2 rows, columns, and subsquares.
So in total there are 3N4 steps, or 3m steps, where m is the input size. This might
undercount slightly, since we have not specified how much time it takes to search the
checklist to determine if an item has been checked. But at worst, this makes the algorithm
O(N5) = O(m1.25). So this is a polynomial-time algorithm, and, as we commented
above, it is polynomial-time on a Turing machine as well.

What about the second problem? The naı̈ve algorithm is to try out every assignment
of integers 1, ·, N2 to the cells of the puzzle, and then check each of them using the above
algorithm. The number of such assignments is (N2)N

4
. If we use m = N4 for the input

size, it is
(
√
m)m > 2m,

if m > 2, so the total number of steps is at least 2m, and thus this algorithm requires
exponential running time, at least.

4 The class P
A decision problem is said to be in P if there is a polynomial-time Turing machine that
recognizes it. Since polynomial-time Turing machines halt on every input, this is the

6



same as saying that there is a polynomial-time Turing machine that decides it. Our re-
marks above show that the problem of determining whether two vertices of a graph are
connected, and of determining whether a filled Sudoku grid is a legal solution, are both in
P.

Have we shown that the problem of determining whether a Sudoku puzzle is solvable
is not in P? No–we have only shown a single algorithm for this problem that is not poly-
nomial time. There are indeed better algorithms, but the question of whether there is a
polynomial-time algorithm is open. We do not know whether this problem is in P.

By the way, our proof that the path problem in graphs is in P depended on one particu-
lar way of encoding the graph. Remember that officially decision problems are languages,
and the same graph problem is translated into different languages under different encod-
ings. But this problem is in polynomial time for any reasonable method of encoding the
graph, for instance, adjacency matrices instead of adjacency lists.

5 Example problems with integers
We will look a problems in which the input is a positive, or a collection of several such
integers. For example, we consider the problem, ‘is N prime?’ The time complexity of
such problems depends on how we encode integers. We might encode the integer N by a
sequence of N marks, for instance

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

is the encoding of thirteen. This is unary encoding. Alternatively, we could encode thir-
teen in decimal, as 13, or in binary as 1101. If the usual decimal encoding has n digits,
then the unary encoding has as many as 10n − 1 symbols, and thus takes exponentially
longer to write down. This will make the time complexity of algorithms look very differ-
ent. However, in problems in which we might deal with large numbers (and cryptograply,
for example, routinely uses integers hundreds of digits long) such an encoding is for prac-
tical purposes unusable. On the other hand, an input that has n decimal digits, when
represented in binary, has about log2 10 ·n ≈ 3.3n digits, so the size of the encoding only
changes by a constant multiple. Thus the running time of algorithms is, asymptotically,
the same at any base. Unless we say otherwise, we will suppose that our integers are
encoded in decimal, or in binary. Which of the two we use makes no difference to the
complexity.

Now let’s look at this problem:

Input: A positive integer N.

Output: Yes if N is prime, No otherwise.

The naı̈ve algorithm is

7



for each integer k=2,3,...,N-1
divide N by k. If remainder is 0, halt and reject

halt and accept

I’ll leave it as an exercise for you to analyze how much time each division takes, but
there are N − 1 ≈ 10m divisions to perform, where m is the length of the input encoded
in decimal, so this algorithm requires exponential time.

Is there a better algorithm? You may be aware of the fact that it is only necessary to
test potential divisors up to √

N ≈ 10m/2 =
√
10

m

but the running time of the resulting algorithm is still exponential in m.
Are there better algorithms? Yes! In fact, in 2002, a polynomial-time algorithm for

this problem was discovered by Aggarwal, Kayal and Saxena. The last two authors were
undergraduates. And their paper is called ‘PRIMES in P.’

8


