Evaluating Hypotheses

[Read Ch. 5]
[Recommended exercises: 5.2, 5.3, 5.4]

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods
Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_{S}(h)$ estimate $error_{\mathcal{D}}(h)$?
Problems Estimating Error

1. **Bias:** If S is training set, $\text{error}_S(h)$ is optimistically biased

\[
\text{bias} \equiv E[\text{error}_S(h)] - \text{error}_D(h)
\]

For unbiased estimate, h and S must be chosen independently

2. **Variance:** Even with unbiased S, $\text{error}_S(h)$ may still vary from $\text{error}_D(h)$
Example

Hypothesis h misclassifies 12 of the 40 examples in S

$$\text{error}_S(h) = \frac{12}{40} = .30$$

What is $\text{error}_D(h)$?
Estimators

Experiment:

1. choose sample S of size n according to distribution \mathcal{D}

2. measure $error_S(h)$

$error_S(h)$ is a random variable (i.e., result of an experiment)

$error_S(h)$ is an unbiased estimator for $error_{\mathcal{D}}(h)$

Given observed $error_S(h)$ what can we conclude about $error_{\mathcal{D}}(h)$?
Confidence Intervals

If

\bullet S \text{ contains } n \text{ examples, drawn independently of } h \text{ and each other}

\bullet n \geq 30

Then

\bullet \text{With approximately } 95\% \text{ probability, } error_D(h) \text{ lies in interval}

\[
error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}
\]
Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately $N\%$ probability, $\text{error}_{D}(h)$ lies in interval

$$\text{error}_{S}(h) \pm z_{N} \sqrt{\frac{\text{error}_{S}(h)(1 - \text{error}_{S}(h))}{n}}$$

where

<table>
<thead>
<tr>
<th>$N%$</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{N}</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
error_\mathcal{S}(h) is a Random Variable

Rerun the experiment with different randomly drawn \(S \) (of size \(n \))

Probability of observing \(r \) misclassified examples:

\[
P(r) = \frac{n!}{r!(n-r)!} \text{error}_\mathcal{D}(h)^r(1 - \text{error}_\mathcal{D}(h))^{n-r}
\]
Binomial Probability Distribution

Binomial distribution for $n = 40, p = 0.3$

\[P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r} \]

Probability $P(r)$ of r heads in n coin flips, if $p = \Pr(\text{heads})$

- Expected, or mean value of X, $E[X]$, is
 \[E[X] \equiv \sum_{i=0}^{n} i P(i) = np \]

- Variance of X is
 \[Var(X) \equiv E[(X - E[X])^2] = np(1-p) \]

- Standard deviation of X, σ_X, is
 \[\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)} \]
Normal Distribution Approximates Binomial

$error_S(h)$ follows a Binomial distribution, with

- mean $\mu_{error_S(h)} = error_D(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} = \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

Approximate this by a Normal distribution with

- mean $\mu_{error_S(h)} = error_D(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$
Normal Probability Distribution

\[
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
\]

The probability that \(X \) will fall into the interval \((a, b)\) is given by

\[
\int_a^b p(x) \, dx
\]

• Expected, or mean value of \(X \), \(E[X] \), is

\[
E[X] = \mu
\]

• Variance of \(X \) is

\[
Var(X) = \sigma^2
\]

• Standard deviation of \(X \), \(\sigma_X \), is

\[
\sigma_X = \sigma
\]
Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$

N% of area (probability) lies in $\mu \pm z_N\sigma$

<table>
<thead>
<tr>
<th>$N%$</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_N</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $error_S(h)$ lies in interval

 $$error_D(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

 equivalently, $error_D(h)$ lies in interval

 $$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

 which is approximately

 $$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$
Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 \ldots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2. Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.
Calculating Confidence Intervals

1. Pick parameter p to estimate
 - $\text{error}_D(h)$

2. Choose an estimator
 - $\text{error}_S(h)$

3. Determine probability distribution that governs estimator
 - $\text{error}_S(h)$ governed by Binomial distribution, approximated by Normal when $n \geq 30$

4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval
 - Use table of z_N values
Difference Between Hypotheses

Test h_1 on sample S_1, test h_2 on S_2

1. Pick parameter to estimate

 $$d \equiv \text{error}_D(h_1) - \text{error}_D(h_2)$$

2. Choose an estimator

 $$\hat{d} \equiv \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

 $$\sigma_d \approx \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval

 $$\hat{d} \pm z_N \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$
Paired t test to compare h_A, h_B

1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

$$
\delta_i \leftarrow \text{error}_{T_i}(h_A) - \text{error}_{T_i}(h_B)
$$

3. Return the value $\bar{\delta}$, where

$$
\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i
$$

$N\%$ confidence interval estimate for d:

$$
\bar{\delta} \pm t_{N,k-1} s_{\bar{\delta}}
$$

$$
s_{\bar{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}
$$

Note δ_i approximately Normally distributed
Comparing learning algorithms L_A and L_B

What we’d like to estimate:

$$E_{S \in \mathcal{D}}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

where $L(S)$ is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B, when trained using randomly selected training sets S drawn according to distribution \mathcal{D}.

But, given limited data D_0, what is a good estimator?

- could partition D_0 into training set S and training set T_0, and measure

 $$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$

- even better, repeat this many times and average the results (next slide)
Comparing learning algorithms L_A and L_B

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

 use T_i for the test set, and the remaining data for training set S_i
 - $S_i \leftarrow \{D_0 - T_i\}$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow \text{error}_{T_i}(h_A) - \text{error}_{T_i}(h_B)$

3. Return the value $\bar{\delta}$, where

\[
\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i
\]
Comparing learning algorithms L_A and L_B

Notice we’d like to use the paired t test on $\bar{\delta}$ to obtain a confidence interval

but not really correct, because the training sets in this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

$$E_{S \subseteq D_0}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

instead of

$$E_{S \subseteq D}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

but even this approximation is better than no comparison