P. Clote

Math Primer
\[[\mathcal{A}]_{\mathcal{I}} \mathcal{P} = 1 = [\mathcal{V} - \mathcal{U}]_{\mathcal{I}} \mathcal{P} \]

2.
\[\mathcal{I} = [\mathcal{U}]_{\mathcal{I}} \mathcal{P} = 0, \quad [\emptyset]_{\mathcal{I}} \mathcal{P} = \mathcal{I} \]

Laws for probability

\((\varepsilon)_{\mathcal{I}} \mathcal{P}^{\mathcal{V} \in \mathcal{A}} \subseteq = [\mathcal{A}]_{\mathcal{I}} \mathcal{P} \) satisfies \([\mathcal{I}, 0, 1] \leftarrow (\mathcal{U})_{\mathcal{I}} \mathcal{P} \)

• Elementary probability function \(p \) with \([\mathcal{I}, 0, 1] \leftarrow \mathcal{U} \): non-empty set of mutually exclusive

• Elementary events \(\mathcal{E} \) non-empty sample space \(\mathcal{U} \)

\(n/(\mathcal{A})_{\mathcal{I}} \mathcal{P} \) in trials \(n \)

Probability theory
\[
\frac{[V]_{\uparrow}d}{[B]_{\uparrow}d [B \mid V]_{\uparrow}d} = [V \mid B]_{\uparrow}d
\]

\text{Bayes' rule} \quad \bullet

\text{Assuming } B_1, \ldots, B_n \text{ mutually exclusive and exhaustive}

\[
\sum_{i=1}^{n} [B_i]_{\uparrow}d [B_i \mid V]_{\uparrow}d = [V]_{\uparrow}d
\]

\text{Total probability formula} \quad \bullet

\text{Conditional probability: } P(\cdot|\cdot)

\[
[B \mid V]_{\uparrow}d = [V]_{\uparrow}d
\]

\forall \text{ independent}, \forall \text{ } [B]_{\uparrow}d [V]_{\uparrow}d = [B \mid V]_{\uparrow}d

\text{The probability of event } \emptyset \text{ is then } P(\emptyset) = [\{\emptyset\}]_{\uparrow}d

\text{For all } \forall A, \forall B \subseteq \emptyset, \forall [B \cup A]_{\uparrow}d - [B]_{\uparrow}d + [A]_{\uparrow}d = [B \cap A]_{\uparrow}d \quad \text{3.}
measurable function.

Continuous random variable: $X : \mathbb{R} \rightarrow \mathbb{R}$ and X and \mathbb{R}, where \mathbb{R}.

Countable infinite.

Discrete random variable: $X : \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{R} finite or countable.

Application later for hidden Markov models.

$$
\frac{\mathbb{E}_X[\mathbb{E}_B[A|B]]}{\mathbb{E}_X[\mathbb{E}_B[A|B]]} = \mathbb{E}_X[\mathbb{E}_B[A|B]]
$$

mutually exclusive and exhaustive. Then

Generalized Bayes’ Rule: Suppose hypotheses B_1, \ldots, B_n are

tence $\frac{\mathbb{P}[A]}{\mathbb{P}[B|A]} = \mathbb{P}[B|A]$ and

justification: None
\[I = x \rho (x) \int_{\infty}^{p} \text{d} \]

Thus

\[x \rho (x) \int_{q}^{p} \text{d} = \left[q \geq (\alpha) X \geq v \mid U \ni \alpha \right] \text{d} = [q \geq X \geq v] \text{d} \]

must satisfy

\[\mathcal{R} \leftarrow \mathcal{R} : x \text{d} \]

(\text{fpd}) \text{ (probability density function)}

In continuous case, \[I = \left[x = X \right] \text{d} ^{\infty} = \int_{\infty}^{\infty} \text{d} \]

Thus

\[x = (\alpha) X \mid U \ni \alpha \]

\[(\alpha) \text{d} = \left[\{ x = (\alpha) X \mid U \ni \alpha \} \right] \text{d} \]

For discrete case, \[[x = X] \text{d} \]
In continuous case, expectation of X
\[E[X] = \int_{-\infty}^{\infty} x \, p_X(x) \, dx. \]

In discrete case, expectation of X
\[E[X] = \sum_{i=-\infty}^{\infty} i \cdot \Pr[X=i]. \]

Hence
\[P_a \leq X \leq b] = \Phi_X(b) - \Phi_X(a) = \int_{a}^{b} p_X(x) \, dx. \]
\[x = X \mathcal{L} \sum_{-\infty}^{\infty} x = [\mathbb{E}X] \mathcal{L} \]

In discrete case

mean square or second moment of \(X \) of \(X \)

\[
[\mathbb{E}X] \mathcal{L} \cdot [\mathbb{E}^2X] \mathcal{L} = [\mathbb{E}X^2] \mathcal{L}
\]

If \(\mathbb{E}X^2 \) and \(\mathbb{E}X^1 \) are independent then

\[
[\mathbb{E}^2X] \mathcal{L} \geq [\mathbb{E}X^1] \mathcal{L} \quad \text{implies} \quad [\mathbb{E}^2X] \mathcal{L} \geq [\mathbb{E}X^1] \mathcal{L}
\]

For any \(q \in \mathbb{R} \),

\[
[\lambda] \mathcal{L} q + [X] \mathcal{L} q = [\lambda q + X^q] \mathcal{L}
\]

Expectation is linear.
\[z^\mu - X] = [X] \Lambda\]

where, \([X] \) is second moment of \([X] \Lambda \) variance.

\[\int_{-\infty}^{\infty} x p(x) \text{d}x = [\mu X] \]

- In continuous case

\[[x = X] \int_{-\infty}^{\infty} \text{d}x \]

- In discrete case

\[\int_{-\infty}^{\infty} x p(x) \text{d}x = [\mu X] \]

- In continuous case
\[[\lambda] \Lambda + [X] \Lambda = [\lambda + X] \Lambda \]

If \(\lambda \) and \(X \) are independent then variance is additive:

\[[X] \Lambda \sigma^2 = [X^2] \Lambda \]

\[[X] \Lambda^\wedge = (X)^0 \]

\[n \hat{\sigma} - [n \hat{X}] \hat{\theta} = \]

\[n \hat{\sigma} + n \hat{\sigma} - [n \hat{X}] \hat{\theta} = \]

\[n \hat{\sigma} + [X] \hat{\theta} n \hat{\sigma} - [n \hat{X}] \hat{\theta} = \]
\[q \geq x \geq a \quad \frac{0}{1} \quad \left\{ \begin{array}{l}
\end{array} \right\} = (x) x d
\]

where density function

\[
\frac{v - q}{a - p} = \frac{v - q}{xp} \int_p^\infty = [p > X > a] \cdot d
\]

In continuous case, \(X \) is distributed uniformly \([q, a]\). •

\[
\left| \mathcal{U} \right| = \left[\omega = X \right] \cdot d
\]

In discrete case •

\(\cup \)

Uniform distribution

Probability Distributions
This is used later in the algorithm to generate normally distributed random reals.

\[
\frac{\frac{1}{2}}{\frac{p^2 + qpq - q}{q + qpq + q}} = \frac{\frac{q}{q + qpq + q} - \frac{\epsilon}{p + qpq + q}}{
= \left(\frac{q}{q + q} \right) - \frac{(p - q)\epsilon}{p - q} = \frac{(p - q)q}{q + q}
\int_x^p \frac{q}{q} \quad \text{is} \ [X]_{\Lambda}
\]

and

\[
\frac{\frac{q}{q + q} = \frac{(p - q)q}{q + q}}{x} = \int_x^p \frac{q}{q} \quad \text{is} \ [X]_{\tilde{A}}
\]

In continuous case, •
\[
x p \frac{\nu \gamma / \zeta}{\zeta / \zeta} \left(x - \varnothing x - \infty \right) = 0
\]

By integration by parts,

\[
0 = x p \frac{\nu \gamma / \zeta}{\zeta / \zeta} \left(x - \varnothing x - \infty \right) \int = [X] \Phi
\]

By symmetry.

\[
\frac{\nu \gamma / \zeta}{\zeta / \zeta} = (x) x d
\]

Probability density function (bell-shaped curve centered at 0).

Normal (Gaussian distribution) with mean 0 and variance 1.
Given as \(n \rightarrow \infty \).

In biology, data often assumed normally distributed, so values \(\mu \) and \(\sigma \).

Within \(1 \) resp. \(2 \) standard deviations \(\sigma \) of \(\mu \), roughly \(68\% \) resp. \(95\% \) of area under the curve of \(f(x) \) has.

\[
\frac{-\sigma \sqrt{2\pi} e^{-(\frac{x-\mu}{\sigma})^2}}{\sqrt{2\pi} e^{-(\frac{x-\mu}{\sigma})^2}} = (x)dx
\]

Probability density function of normal distribution with mean \(\mu \) and variance \(\sigma^2 \) has.

\[
I = [X] \Lambda \text{ so } \frac{1}{\sqrt{2\pi} e^{-(\frac{x-\mu}{\sigma})^2}} = e^{0} = e^{0}
\]

\[
x e^{\frac{\nu Z/\zeta}{Z}} \int_{-\infty}^{\infty} f(x)dx = e^{0} \int_{-\infty}^{\infty} e^{\frac{\nu Z/\zeta}{Z}}dx
\]
\[\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i \]

For each \(X \), \(n \), \(\bar{X} \) are independent, uniformly distributed on \([0, 1]\).

Approximation of normal distribution: Let \(X_1, \ldots, X_n \) be independent, normally distributed with mean \(\mu \) and variance \(\sigma^2 \). Let \(X \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distributed \(\mathcal{N}(\mu, \sigma^2) \). Let \(\bar{X} \) be independent, identically distribut
\[
\frac{[uS] \Lambda}{[uS] \mathcal{A} - uS} \mathcal{A} \phi + \eta = [uS] \mathcal{A} \phi + \eta = [uS \phi + \eta] \mathcal{A}
\]

By linearity of expectation.

\[
[X] \mathcal{A} \phi + \eta = [X \phi + \eta] \mathcal{A}
\]

By Central Limit Theorem.

\[
\frac{\sqrt{1/2}}{\sqrt{u}/2 - \langle X \rangle_{u} \mathcal{A}}
\]

approximately normal with mean 0 and variance 1.

\[
\frac{1/2}{\sqrt{u}/2 - \langle X \rangle_{u} \mathcal{A}}
\]

By Central Limit Theorem.

\[
1/12 = [X] \Lambda
\]

and
Algorithm

\[z^0 = 1 \cdot z^0 = \]
\[\left[\frac{[uS] \Lambda}{[uS] H - u_S} \right] \Lambda z^0 = \]
\[\left[\frac{[uS] \Lambda}{[uS] H - u_S} \right] \Lambda z^0 = \left[uS \phi + \eta \right] \Lambda \]

\[[X] \Lambda z^0 = [X \phi + \eta] \Lambda \]

\[\eta = 0 \cdot \phi + \eta = \]
\[\left[\frac{u \Lambda \phi}{\eta u - u_S} \right] H \phi + \eta = \]
\[uX + \cdots + 1X = X \]

is

For \(n \) independent trials, the number \(X \) of successes in \(n \) trials

success is 1 and failure is 0.

\[
\{ 1, 0 \} \leftarrow \mathcal{U}: X
\]

Bernoulli trial is experiment with probability of success

Binomial Distribution

{mean,sqrt(variance)*exp(-N/2)/(sqrt(N)*sqrt(1.2, 0))

\[
\text{return for } i=0; i<N; i++ \text{ \{ double } x = + \text{ rand() rand_MAX}/() \text{ } \}
\]

\text{int __double x=0;}

\text{const int N = 20; }
\[(d - 1)du = [X] \Lambda \]

and

\[du = [X] \mathcal{A}\]

so by additivity of expectation and variance

\[(d - 1)d = \mathcal{C}d - d = \mathcal{C}^{\mathcal{A}} \mathcal{A} - \mathcal{C}^{\mathcal{A}} \mathcal{A} = [\mathcal{A}] \Lambda \]

and \(d = [\mathcal{A}] \mathcal{A}\) won

\[\cdot \mathcal{y} \cdot u (d - 1) \mathcal{y} \mathcal{d} (\mathcal{y} \quad \mathcal{u}) = (\mathcal{y} \cdot u) q = [\mathcal{y} = X] \mathcal{d}\]

where each \(\mathcal{y} \cdot \mathcal{A}\) is an independent Bernoulli r.v.
\[
\sum_{n=0}^{\infty} P^n x^n \cdot e^{-x} = x^n
\]

\[\text{Nth term in Taylor expansion of}
\]

\[\text{for } \lambda \in \mathbb{N}.
\]

\[
\lambda \cdot e^{-\lambda} \int_{\{\gamma = \lambda\}} d\lambda = [\gamma = X] d\lambda
\]

\[\text{X has Poisson distribution with parameter } \lambda.
\]

\[\text{Poisson Distribution}
\]

\[\text{number of successes}.
\]

\[\text{which is the Poisson distribution with mean np expected}
\]
\[Y = \chi \partial Y - \partial \chi = \]
\[(\chi \partial) \frac{\chi p}{p} \chi - \partial \chi = \]
\[\left(\frac{i \gamma}{\gamma T} \sum_{0}^{\infty} \right) \frac{\chi p}{p} \chi - \partial \chi = \]
\[\chi - \partial \frac{i \gamma}{\gamma T} \sum_{0}^{\infty} = [X] H \]
\[[X] \Lambda = Y = [X] H \quad \text{Note} \]
\[\exists \]
\[\exists \text{OS} \left(\frac{i \gamma}{\gamma x} \right) \]
\[\mathcal{Y} = \mathcal{Z} \mathcal{X} - \mathcal{Z} \mathcal{X} + \mathcal{Y} = \mathcal{Z} [X] \mathcal{H} - [\mathcal{Z} X] \mathcal{H} = [X] \Lambda \]

so

\[\mathcal{Z} \mathcal{X} + \mathcal{Y} = \]

\[(\mathcal{X} \mathcal{X} + \mathcal{Y} \mathcal{X})_{\mathcal{Y} - \mathcal{X}} = \]

\[(\mathcal{X} \mathcal{X} \mathcal{X}) \frac{\mathcal{Y} \mathcal{X}}{\mathcal{X} \mathcal{X} \mathcal{X}}_{\mathcal{Y} - \mathcal{X}} = \]

\[\left(\frac{i \mathcal{Y}}{\mathcal{Y} \mathcal{X} \mathcal{X}} \right)_{\mathcal{Y} \mathcal{X} \mathcal{X}}^0 = \sum_{\mathcal{Y} \mathcal{X} \mathcal{X}} \frac{\mathcal{Y} \mathcal{X}}{\mathcal{X} \mathcal{X} \mathcal{X}}_{\mathcal{Y} - \mathcal{X}} = [\mathcal{Z} X] \mathcal{H} \]

Second moment is

\[\mathcal{X} \mathcal{X} = \frac{i \mathcal{Y}}{\mathcal{Y} \mathcal{X} \mathcal{X}} \sum_{\mathcal{Y} \mathcal{X} \mathcal{X}}^0 = \]

Note that
\[
\begin{cases}
0 & \text{if } t < 0, \\
(\alpha e^{-\alpha t}) & \text{if } t \geq 0
\end{cases}
\] = (t)f

Exponential Distribution

with parameter \(\alpha > 0 \): probability density function

\(F(t) \)

Exponential distribution models the intrarrival time between two occurrences of events.

Exponential distribution models the interarrival time with a given time interval.

Poisson distribution models the number of events that occurred in a given time interval. (Substitution of nucleotide bases)

Applications of Poisson and of exponential distribution.
\[
\frac{n}{P(t)} \approx \text{[arrived within } t \text{ time]} \\
\text{time. Let } n \text{ be mean interarrival time, let } P(t) \text{ be small interval of time.}
\]

Exponential distribution models memoryless interarrival time.

\[
\frac{\lambda}{t} = [X] \Lambda
\]

and

\[
\frac{\nu}{t} = [X] E
\]

By integration by parts.

\[
\text{otherwise} \\
0 \quad 0 \\
\{0 \quad 1 - e^{-a(t-\epsilon)} \}
\]

cumulative density function.
\[
\begin{cases}
0 \forall \epsilon > 0 \\
0 \leq \tau \leq \mu - \epsilon - 1
\end{cases}
= (\tau) I
\]

Yields exponential distribution.

\[
\frac{\eta}{\tau^\epsilon - \tau} = 0
\]

Thus

\[
\left(\frac{\eta}{\tau^{0.1}} - 1 \right) \approx [\text{time within arrival}].I
\]

Take limit

\[
\left(\frac{\eta}{\tau^{0.1}} - 1 \right) \approx [\text{time within arrival}].I
\]

Assuming independence (memoryless),

\[
\frac{\eta}{\tau^{0.1}} - 1 \approx [\text{time } \tau^{0.1} \text{ within arrival}].I
\]
Algorithm

\[
\begin{align*}
\{ t > X \in [n/2] \} \cdot d &= \\
\left[\frac{n}{t} - \frac{1}{2} < X \in [1] \right] \cdot d &= \\
\left[\frac{n}{t} - \frac{1}{2} < X \right] \cdot d &= \\
\frac{n}{t} - \frac{1}{2} - 1 &= [t \text{ arrived in time }] \cdot d
\end{align*}
\]

so \(x - 1 = [x < X] \cdot d \)

Let \(X \) be uniformly distributed on \([0, 1]\).\[\frac{n}{t} = \frac{2}{t}\]

with mean interarrival time
Hypergeometric Distribution

\[
P(X = k) = \frac{\binom{m}{k} \binom{n-m}{u-k}}{\binom{n}{u}}
\]

that within time \(t \) there are exactly \(u \) arrivals is approximately

Fact: Given \(\frac{X}{1} \) as the mean interarrival time, the probability

```java
return (mean*Log(x));
```

\[
x = \text{double} \text{ rand}() \text{ RAND_MAX}
\]
Application: DNA segmentation algorithm

\[d - 1 = b \cdot \frac{u}{x} = d \]

\[\text{where} \]

\[b, q, d \left(\frac{q}{w} \right) \approx (q, m, u) \eta \]

For large, hyperarithmetically binomial.

Binomial distribution: choosing \(m \) balls with replacement.

Replacement.

Hypergeometric distribution: choosing \(m \) balls without replacement.

\[\frac{\binom{w}{u}}{\binom{q-w}{s-u} \binom{q}{x}} = (q, m, u) \eta = [q = X] \cdot \eta \]

Hypergeometric distribution