P. Cloé

Gapped motifs in DNA
Rocke-Tompa algorithm for finding
position of the motif removed.

the motif, and using this scores the genome for a new start
computes a probability of nucleotide occurrences at each site of
where one begins with m nonoverlapping motifs, removes one,

Idea similar to Gibbs sampler for multiple sequence alignment,

allowed within non-coding sections of genome.

allowed (within roughly m) since insertions, deletions
mots of size roughly m. Goal is to find a repeat of in gapped

Fix m and window size w. Goal is to find a repeat of in gapped

DNA sequences by Rocke, Tompa in Recomb'98.

Presentation of “An algorithm for finding novel gapped motifs in

Gibbs sampler variant
distribution at site \(j \) with the background distribution.

where \(q \) is the background frequency of residue \(j \). In other

\[
\left(\frac{a/b}{f_{i,j}} \right) \log_2 \sum_{j} f_{i,j}^a = (f, s)_o
\]

by current candidate window, divided by \(m \). Suppose that \(s \) is
alignment of \(m - 1 \) motifs (one has been removed) augmented
occurrence of residue \(j \) at site \(i \) of multiple sequence

Define \(\theta_i \) to be the ratio of the number of
define new scoring function for new start position of motif in
alignment, inductively keep a multiple sequence alignment, and

In place of requiring constant size \(m \) as in multiple sequence
Length (real minus coding regions)

Naive implementation takes time $O_{\mathcal{C}^m}$, where \mathcal{C} is genuine.

$0 > \langle (\ell, s) \tau \rangle$

Warning. One probably wants

$0 = \langle (\ell, s) \tau \rangle$

so that

$\langle (\ell, s) \sigma \rangle - (\ell, s) \sigma = (\ell, s) \tau$

Recall that relative entropy is non-negative. Authors use alignment (between sequence and a profile) defined by similarity scoring function $T(s')$, for pairwise sequence similarity scoring function $T(s)$.

\mathcal{F}
• Instead, perform modification of pairwise sequence alignment of window of size \(w \) with entire genome \(G \), where first row is initialized to 0 (end-space free alignment). Then score in row \(w \) and column \(i \) is the score of an optimal alignment between the window and a suffix of the \(i \)-letter prefix of \(G \) (i.e. a sequence ending at position \(i \)).

• Time complexity of revised alignment algorithm is \(O(wG) \). Don’t keep entire \(w \times G \) table in memory, but only last part. For traceback, keep roughly \(w \) columns of \(w \times G \) table as progress, trying to find the largest scoring region.

• Evaluation function for \(m \times w \) alignment \(A \) is sum over all columns \(j \) of \(A \) of the score of \(j \). When evaluation function no longer improves, quit.
multiple sequence alignment, for the next iteration, use probabilities \(p \) to determine a new sequence to add to the sequence \(A \).

Alignment of window ending at position \(i \) with remaining alignment of window ending at position \(i \) with remaining alignment \(A \), determining for each site \(j \) of genome \(C \), an optimal alignment \(\alpha \), performing \(O(n) \) dynamic programming pass (end-space free alignment \(\alpha \) of \(m - 1 \) sequences.

This leaves randomly proportioned to evaluation function, or uniformly randomly of maximize evaluation function, or uniformly randomly choosing to choose sequence to remove (by deterministically choosing to \(w \), in genome \(C \).

Alignment of \(m \) nonoverlapping sequences, each of roughly size 1. At beginning of each iteration, have a multiple sequence summary of algorithm
(Deterministically by choosing sequence to maximize p_i; else proportionally to probability p_i.)